
Adaptive Database Synchronization for an
Online Analytical Cloud-to-Edge Continuum

Daniel Costa
daniel.v.costa@inesctec.pt
INESC TEC and U. Minho

Portugal

José Pereira
jose.o.pereira@inesctec.pt
INESC TEC and U. Minho

Portugal

Ricardo Vilaça
ricardo.p.vilaca@inesctec.pt
INESC TEC and U. Minho

Portugal

Nuno Faria
nuno.f.faria@inesctec.pt
INESC TEC and U. Minho

Portugal

ABSTRACT
Wide availability of edge computing platforms, as expected in
emerging 5G networks, enables a computing continuum between
centralized cloud services and the edge of the network, close to
end-user devices. This is particularly appealing for online ana-
lytics as data collected by devices is made available for decision-
making. However, cloud-based parallel-distributed data processing
platforms are not able to directly access data on the edge. This can
be circumvented, at the expense of freshness, with data synchro-
nization that periodically uploads data to the cloud for processing.

In this work, we propose an adaptive database synchronization
system that makes distributed data in edge nodes available dynami-
cally to the cloud by balancing between reducing the amount of data
that needs to be transmitted and the computational effort needed
to do so at the edge. This adapts to the availability of CPU and
network resources as well as to the application workload.

CCS CONCEPTS
• Information systems→ Remote replication; Data federation
tools.

KEYWORDS
synchronization, cloud-edge environment, replication, data federa-
tion, analytical
ACM Reference Format:
Daniel Costa, José Pereira, Ricardo Vilaça, and Nuno Faria. 2022. Adaptive
Database Synchronization for an Online Analytical Cloud-to-Edge Con-
tinuum. In The 37th ACM/SIGAPP Symposium on Applied Computing (SAC
’22), April 25–29, 2022, Virtual Event, . ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3477314.3507212

1 INTRODUCTION
Data analysis has traditionally been performed on dedicated sys-
tems, separate from operational databases, where data is collected
and modified by a transactional workload. These online transaction
processing (OLTP) systems focus on reliability and interactive per-
formance. Periodically, data is extracted from operational systems,
transformed to a representation amenable to analysis, and loaded
into a second database that can then be used to run, often complex

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’22, April 25–29, 2022, Virtual Event,
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8713-2/22/04.
https://doi.org/10.1145/3477314.3507212

and resource-intensive queries. These online analytical processing
(OLAP) systems emphasize the ability to consume large volumes of
data for each operation.

In cloud systems, the freshness of the data that can be analyzed
is improved by hybrid transactional analytic processing (HTAP)
systems that are able to handle both workloads simultaneously
from a single copy of data, avoiding the need for ETL.

However, such cloud-based parallel-distributed data processing
platforms are not able to directly access data in the edge. The
main reason for this is the inability of networks to cope with the
volume of data that would reside in edge devices. Enlisting edge
nodes as additional nodes in the parallel-distributed HTAP system
would severely impact their performance by introducing a resource-
constrained node with much higher latency.

The challenge is thus twofold: First, the data that is transferred
from the edge to the cloud needs to be minimized by uploading only
once what is needed to answer actual queries. Second, it needs to
be done online, as a reaction to actual queries and not periodically,
to keep up with what is expected from an HTAP system.

This paper tackles these challenges with a novel adaptive data-
base synchronization system that makes distributed data in edge
nodes available dynamically to the cloud by balancing between
uploading recently modified data with pushing down query frag-
ments, that perform part of the computation in the edge. Moreover,
it adapts to the availability of CPU and network resources as well
as to the application workload, allowing a reduction of the volume
of data transferred to the cloud.

2 BACKGROUND AND ASSUMPTIONS
We consider a hybrid edge-cloud architecture – sketched in Figure 1
– as the basis of our system model as is commonly found in practice
[4, 5]. The edge devices collect and pre-process data, storing them
into their local databases, while the cloud servers run analytical
distributed workloads over the data collected by the edge.

Each cloud server has access to each edge device’s database
by using federation wrappers, i.e., software components that hide
network and serialization/deserialization details of remote data,
making them appear as if they were local through a SQL interface.

This works as follows: A query submitted to the query engine
involving a remote table is parsed as usual, producing a query plan.
This plan determines the fetched data from remote data sources.
We combine existing federation wrappers, for remote access, with
a custom federation wrappers that manage local caching to reduce
the latency of frequently accessed data, where each cloud server
caches a snapshot of the data read.

https://doi.org/10.1145/3477314.3507212
https://doi.org/10.1145/3477314.3507212


SAC ’22, April 25–29, 2022, Virtual Event, Daniel Costa, et al.

xDBCxDBCxDBC

FDW

FDW

FDW

FDW

FDW

FDW

FDW

FDW

FDW

Worker 
Node Ca

ch
e

cloud-server-01

Worker 
Node Ca

ch
e

cloud-server-02

Worker 
Node Ca

ch
e

cloud-server-N

Edge 
Node DB

edge-device-01

Edge 
Node DB

edge-device-02

Edge 
Node DB

edge-device-N

Figure 1: Overview of the system model.

3 APPROACH
Our proposed approach aims to reduce the impact of data replication
on both network delays and load on the edge device. This means
balancing concepts such as only sending the data necessary by the
cloud at any given time to reduce transfer latencies and omitting
some filters to reduce execution time on the edge.

3.1 Minimizing data transfer
To minimize data sent, we must not only avoid sending duplicate
data, but also only send the rows required by the server that issued
the replication. To solve the first challenge, we cache in the cloud
server the data replicated, which also improves read latency on sub-
sequent queries that reuse the same data. For the second challenge,
we keep track of both the timestamps of the data received, and the
query filters used by the cloud server. When the server issues a
new query, it gets translated into an equivalent one which excludes
the already cached data, resulting in the minimum amount of data
transfer possible.

With a practical example, consider table Demo, whose schema
and data is presented in Figure 2a.

Figure 2 displays the state of a cloud server’s cache after suc-
cessive queries. Newly retrieved rows are highlighted in yellow,
already cached rows have a gray background, and remote-only
rows have a white background. Initially, there are no cached rows
in the cloud server (Figure 2a).

First, the server performs the query SELECT * FROM Demo WHERE
A = 1. As there are no rows that were previously cached, the entire
query is sent to the edge as is. The returned rows are cached in the
cloud server. In addition to the data itself, we also store the filter and
the maximum timestamp into the single predicate 𝐴 = 1 ∧𝑇𝑠 ≤ 4,
to be later combined with subsequent queries.

Next, the server performs the query SELECT * FROM Demo WHERE
B = 1. Looking at Figure 2b, we see that we already have one row
out of the two that will be returned by the query, which means it
does not need to be transferred through the network. To accomplish
this, we look at the previously stored predicates 𝑃 and combine
them with the current query 𝑄 , using the expression 𝑄 ∧ ¬𝑃 . In
this case, this results in the query SELECT * FROM Demo WHERE
B = 1 AND NOT (A = 1 AND Ts <= 4). Once again, we store
the filter and the maximum timestamp, resulting in the exclusion
predicate (𝐴 = 1 ∧ 𝑇𝑠 ≤ 4) ∨ (𝐵 = 1 ∧𝑇𝑠 ≤ 2).

Lastly, the cloud server performs the final query SELECT * FROM
Demo WHERE B = 1. Between this query and the previous one, the
edge device inserted the row ⟨5, 5, 𝐹 , 1, 1⟩ into Demo. Using again
the same process, the current query is translated into SELECT *
FROM Demo WHERE B = 1 AND NOT ((A = 1 AND Ts <= 4) OR
(B = 1 AND Ts <= 2)), which only returns the new row (𝐼𝑑 = 5).

As more and more queries are issued by the server, the number
of predicates could grow indefinitely. Therefore, there are issues
related with the storage overhead in the cloud server and large
query text that becomes increasingly more complex to parse and
send through the network. To mitigate this, our algorithm employs
a coalescing strategy to simplify stored filters.

With a practical example, consider again table Demo, with the
same schema of Figure 2 but different data. When we execute the
query SELECT * FROM Demo WHERE A=1 AND B=1 and receive
the maximum timestamp of 1, we store the predicate 𝐴 = 1 ∧ 𝐵 =

1 ∧𝑇𝑠 ≤ 1.
When we execute a second query SELECT * FROM Demo WHERE

A=1 AND C=1 and receive the maximum timestamp of 3, we store
the additional predicate 𝐴 = 1 ∧𝐶 = 1 ∧𝑇𝑠 ≤ 3. However, storing
both 𝐴 = 1 ∧ 𝐵 = 1 ∧ 𝑇𝑠 ≤ 1 and 𝐴 = 1 ∧ 𝐶 = 1 ∧ 𝑇𝑠 ≤ 3 is
suboptimal, as 𝐴 = 1 is stored twice. A more efficient way is to
store 𝐴 = 1∧ ((𝐵 = 1∧𝑇𝑠 ≤ 1) ∨ (𝐶 = 1∧𝑇𝑠 ≤ 3)). Thus, the first
optimization step is to remove repeated filters.

Consider now that we execute a third query SELECT * FROM
Demo WHERE A=1 and receive the maximum timestamp of 6. As
the predicate 𝐴 = 1 ∧ 𝑇𝑠 ≤ 6 encompasses all the data returned
by the previous two predicates, we can simply store only this one.
Similarly, if we execute fetch all table, we can simply remove all
other stored filters. Thus, the second optimization step is to coalesce
filters when they are subsets of other filters.

3.2 Filter pruning
We can perform filter simplifications to remove redundant filters.
However, the complexity of the statement increases for each unique
condition. If the query is complex enough, we might have a case
where the execution on the edge device outweighs the reduced
network costs. Therefore, a trade-off must be made, in which we
consider removing some filters – (possibly) leading to higher data
transfers – in favor of a faster execution in the edge.

To do so, our algorithm tries to balance the cost of filtering
and the cost of transferring the data. Consequently, it requires
parameters that define the relative costs of each operation. Firstly,
the cost of filtering the data source can be defined as 𝑐 𝑓 = 𝑐𝑐 ∗
𝑐 ∗ 𝑟 where 𝑐 𝑓 is the total cost of filtering, 𝑐𝑐 denotes the cost of
each condition, 𝑐 represents the number of conditions, and 𝑟 is the
number of rows in the data source.

On the other hand, the cost of transferring the data can be defined
as 𝑐𝑡 = 𝑐𝑏 ∗ 𝑟 ∗𝑤 where 𝑐𝑡 represents the total cost of transmitting
the data, 𝑐𝑏 denotes the cost per byte transferred, 𝑟 expresses the
number of rows, and𝑤 is the average width of each row in bytes.
Finally, if the cost of filtering is greater than the required to transfer
the data, some filters are superfluous.

In our algorithm, we eagerly evaluate the gains of removing
each filter. We estimate the number of bytes returned from the filter
by requesting the number of rows and the average width of the



Adaptive Database Synchronization for an
Online Analytical Cloud-to-Edge Continuum SAC ’22, April 25–29, 2022, Virtual Event,

Id Ts Deleted A B
1 1 F 0 0
2 2 F 0 1
3 3 F 1 0
4 4 F 1 1

(a) Inital state of table Demo.

Id Ts Deleted A B
1 1 F 0 0
2 2 F 0 1
3 3 F 1 0
4 4 F 1 1

(b) State of Demo after the first
query ’SELECT * FROM Demo
WHERE A = 1’.

Id Ts Deleted A B
1 1 F 0 0
2 2 F 0 1
3 3 F 1 0
4 4 F 1 1

(c) State of Demo after the sec-
ond query ’SELECT * FROM Demo
WHERE B = 1’.

Id Ts Deleted A B
1 1 F 0 0
2 2 F 0 1
3 3 F 1 0
4 4 F 1 1
5 5 F 1 1

(d) State ofDemo after the new row
⟨5, 5, 𝐹 , 1, 1⟩ and query ’SELECT *
FROM Demo WHERE B = 1’.

Figure 2: Cached data of table Demo after successive queries. The yellow rows represent the newly cached data, the gray rows represent the
data already cached, and the white rows represent data not present in the cache.

data source. The estimated number of bytes can be expressed as
𝑏𝑒 = 𝑟𝑒 ∗𝑤𝑒 where 𝑏𝑒 is the estimated number of bytes, 𝑟𝑒 denotes
the estimated number of rows and 𝑤𝑒 represents the estimated
average width of each row. Firstly, we test the filter with the lowest
expected byte return and remove it if it decreases the overall costs
of the system. This is the case if 𝑐 ∗ 𝑟 < 𝑐𝑏 ∗ 𝑟 𝑓 ∗ 𝑤 where 𝑐 is
the marginal filtering cost of the filter per row, 𝑟 is the estimated
number of rows in the data source, 𝑐𝑏 is the cost per byte transferred,
𝑟 𝑓 represents the marginal number of rows filtered by the filter,
and𝑤 symbolizes the average width of each row. If so, the filter is
removed and the next filter is tested. On the other hand, we stop
the process if there are no more filters or the cost of removing the
filter increases the overall cost.

One downside is that this process has associated compute costs.
For example, estimating the number of rows is a compute-intensive
process that requires connection to the data source. Filter pruning
is executed exclusively if 𝑐 𝑓 > 𝑐𝑡 + 𝑐𝑒 ∗ 𝑓 where 𝑐 𝑓 is the cost of
filtering, 𝑐𝑡 denotes the estimated cost of transferring the missing
data, and 𝑐𝑒 is the cost of estimating the number of rows per filter
and 𝑓 represents the number of stored filters.

4 IMPLEMENTATION
Our implementation was designed to answer analytical queries in
the cloud and transaction queries in the edge. We use PostgreSQL
as the cloud database engine. The analytical queries are parsed by
PostgreSQL, which transfers the query plan to the Multicorn. The
Multicorn passes the filters and projections to our modules.

The modules were implemted using Python. The cache module
notifies the synchronization module of what data is required. This
module uses psycopg2 library to establish the connection to the
edge. The sync module generates the query to be executed by the
edge by combining the filters passed from PostgreSQL and the
negation of previous stored filters.

After executing the query, it receives the data and updates the
cache. Finally, it appends the new filters with the associated times-
tamp and coalesces the predicate. To store the filters and their
timestamps, we use a SetTrie [6], which improves the performance
of searching for subsets and supersets of filters and allows us to
avoid storing repeated prefixes.

5 DISCUSSION
We presented a synchronization middleware component suitable
to a cloud-edge environment that dynamically balances between
filtering data in the edge and transferring more data to the cloud.

Our proposal considers the edge’s CPU capabilities, the network
resources, and the application workload to reduce the execution
time. Our proposition takes advantage of the filter pushdown ca-
pabilities of the data source to transfer only recently modified and
requested data.

Existing database systems often provide mechanisms for asyn-
chronous replication that uses the transactional log and the log
sequence number (LSN) in each record to reduce the amount of
data that needs to be transferred [1]. Another alternative uses the
Bose–Chaudhuri–Hocquenghem (BCH) error-correcting code to
determine differences between replicas [2]. The FSYNC [7] is a dif-
ferential synchronization algorithm for storage. Another alternative
is the use of Invertible Bloom Lookup Table [3]

The algorithm described in this paper is suitable to be used in
an online analytical cloud-to-edge continuum because it is fitted to
answer queries on-demand and reduce the data transferred from
the edge. Besides, this component can decrease the impact of the
analytical workload on the edge and the network.

ACKNOWLEDGMENT
Partially funded by project AIDA – Adaptive, Intelligent and Dis-
tributed Assurance Platform (POCI-01-0247-FEDER-045907) co-
financed by the European Regional Development Fund (ERDF)
through the Operational Program for Competitiveness and Interna-
tionalisation (COMPETE 2020) and by the Portuguese Foundation
for Science and Technology (FCT) under CMU Portugal.

REFERENCES
[1] PostgreSQL developers. 2021. PostreSQL Documentation – Chapter 27. High Avail-

ability, Load Balancing, and Replication. https://www.postgresql.org/docs/14/high-
availability.html.

[2] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. 2004. Fuzzy Extractors: How
to Generate Strong Keys from Biometrics and Other Noisy Data. In Advances in
Cryptology - EUROCRYPT 2004, Christian Cachin and Jan L. Camenisch (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 523–540.

[3] Michael T. Goodrich and Michael Mitzenmacher. 2015. Invertible Bloom Lookup
Tables. arXiv:1101.2245 [cs.DS]

[4] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. 2013. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future generation computer systems 29, 7 (2013), 1645–1660.

[5] Partha Pratim Ray. 2016. A survey of IoT cloud platforms. Future Computing and
Informatics Journal 1, 1-2 (2016), 35–46.

[6] Iztok Savnik. 2013. Index Data Structure for Fast Subset and Superset Queries.
In Availability, Reliability, and Security in Information Systems and HCI, Alfredo
Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl, and Lida Xu (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 134–148.

[7] Tian Wang, Jiyuan Zhou, Anfeng Liu, Md Zakirul Alam Bhuiyan, Guojun Wang,
and Weijia Jia. 2019. Fog-Based Computing and Storage Offloading for Data
Synchronization in IoT. IEEE Internet of Things Journal 6, 3 (2019), 4272–4282.
https://doi.org/10.1109/JIOT.2018.2875915

https://arxiv.org/abs/1101.2245
https://doi.org/10.1109/JIOT.2018.2875915

	Abstract
	1 Introduction
	2 Background and assumptions
	3 Approach
	3.1 Minimizing data transfer
	3.2 Filter pruning

	4 Implementation
	5 Discussion
	References

