
Towards Generic Fine-Grained Transaction
Isolation in Polystores

Nuno Faria[0000−0003−4691−0440], José Pereira[0000−0002−3341−9217], Ana Nunes
Alonso[0000−0002−0519−9675], and Ricardo Vilaça[0000−0002−6957−1536]

INESC TEC and U. Minho, Portugal
{nuno.f.faria,jose.o.pereira,ana.n.alonso,ricardo.p.vilaca}@inesctec.pt

Abstract. Transactional isolation is a challenge for polystores, as along
with the limited capabilities of each datastore, we have to contend with
their sheer diversity. However, transactional isolation is increasingly de-
sirable as a variety of datastores are being sought after for roles that go
beyond simple data lakes, where information is mostly static. Transac-
tional guarantees are also relevant for reliability at scale. Finally, it would
also close the gap to what is available in multi-model database systems.
In this paper, we propose that transactional isolation in polystores can be
achieved by leveraging the query engine, i.e., we implement some of the
responsibilities of a transactional storage manager (TSM) in the query
language itself. This has the key advantage of greatly simplifying design
and implementation, as it doesn’t need to be re-invented for each datas-
tore, and should increase performance, by taking advantage of dynamic
query optimization where available. We demonstrate the feasibility of
the proposal with a simple proof-of-concept and experiment.

Keywords: transactions· snapshot isolation· polystores

1 Introduction

Polystores aim at combining the diversity of data models, query languages and
interfaces, and architectures of multiple datastores [17, 22]. Although these tar-
get, mainly, big data and analytical workloads, transactional updates are desired
for reasons such as the ability to correct and update data, consistency consid-
ering concurrent updates, and ultimately for reliability, even if not handling
frequent updates [7]. More recently, this need arises with fast-changing data
incoming from different sources, as is the case with IoT sensors and periodic
synchronization with edge systems [13].

Traditionally, transactional isolation and recovery are the responsibility of the
transactional storage manager layer [21]. Depending on the strategy used, these
are achieved by the combined effect of the lock manager, the buffer pool (i.e., for
latching and holding different versions), and the log manager. These features are
implemented separately and lie beneath the query engine, which then operates
within the abstraction of an isolated and recoverable data space. More recently,

2 N. Faria et al.

transactional isolation has also been provided for NoSQL datastores as a custom
middleware layer that wraps the native store [19].

Unfortunately, transactional isolation in polystores is harder than in tradi-
tional database systems or homogeneous big datastores, and often identified as
a key research challenge [28, 30]. The first issue is that target datastores have
wildly different isolation and consistency criteria, and not just different imple-
mentations of similar criteria. Namely, some systems, such as MongoDB [26] or
Neo4j [5], provide multi-operation isolation and recovery. Other systems, such as
HBase, do not offer multi-operation isolation but provide multi-versioning and
a re-do log, that can be used for transactional isolation at the middleware level
[19]. Still, some systems (e.g., Cassandra [23]) exhibit no isolation at all and
offer only eventual consistency [31], which is central to their value proposition
as distributed and scalable. The second issue is how to enforce a single trans-
actional context for an operation reading from or updating multiple datastores.
Even datastores that have transactional support such as MongoDB or Neo4j
do not support XA [1] transaction interfaces for two-phase commit. Therefore,
individually wrapping or modifying each datastore with a transactional storage
management layer is both unfeasible and undesirable.

In this paper, we assume Snapshot Isolation [9] as the target transactional
isolation criterion and the use of a multi-version optimistic concurrency control
mechanism. We divide transactional processing into handling two overarching
concerns: The first involves capturing write operations and, when the commit
is requested, validating that there are no write-write conflicts with concurrent
transactions; the second is the ability to, at any point during the execution of a
given transaction, reconstruct the current snapshot by reconciling values written
by previously committed transactions, items updated by the current transaction
and avoiding values written by concurrent transactions. We address only the
latter and focus on the computation needed to deliver the snapshot in a polyglot
query engine.

Our first requirement is to provide transactional isolation and recovery, while
at the same time allowing unfettered access to native stores. This precludes, for
instance, cluttering the data with version information. The second requirement
stems from the observation that the best approach for computing isolated snap-
shots varies for different datastores and that an efficient implementation must
take advantage of each one’s strengths.

The main insights in this paper are that reconstructing a transactional snap-
shot across a diversity of datastores (1) is itself a polyglot data processing prob-
lem and (2) that we can take advantage of an optimizing query engine to make
it simpler, portable, and efficient. We are, as the saying goes, “eating our own
dog-food.”

Towards Generic Fine-Grained Transaction Isolation in Polystores 3

2 Background and assumptions

2.1 Query processing

We assume as the baseline a cloud multi-datastore query engine such as Cloud-
MdsQL [22] offering a SQL-like language that can embed statements in native
query languages of diverse datastores as table expressions, i.e., native table ex-
pressions. It follows the mediator/wrapper architecture from multi-database sys-
tems: A logically centralized mediator handles client connections, parses and
optimizes queries, and then hands sub-sets of the resulting plan for each tar-
get datastore to each wrapper, that extracts native query fragments or converts
relational operators in the plan and handles execution and data transfer.

In practice, this means that ad-hoc views of data from multiple datastores
can be defined and used in relational queries. A relational data model, extended
with non-atomic list and dictionary types, is used as the target for such views
and the domain for queries in the CloudMdsQL common query language. The
major advantage of this approach is that it is able to fully exploit the power
of each datastore with native queries without having to fully map data to a
common data model, while at the same time globally optimizing the composite
query, e.g. by pushing down selection predicates, using bind join, performing join
ordering, or planning intermediate data shipping.

2.2 Versions and snapshot isolation

We assume Snapshot Isolation [9] as the target criterion. In contrast to tra-
ditional ANSI isolation levels based on 2-phase locking, using a multi-version
concurrency control mechanism has clear advantages for read-only transactions
and parallel/distributed systems, and is now widely preferred.

This means that there can be multiple versions of each data item stored at the
same time and that a version is visible to a transaction if and only if it had been
committed before the transaction started. For simplicity, we consider only full
Snapshot Isolation, with multi-statement consistency, and not the weaker single-
statement Read Consistency levels that are also available in various systems.

Assuming that the minimum visibility (commit) timestamp for an item is cts
and that the maximum (starting) visibility timestamp for a transaction is sts,
we can consider these possible states for each usable version of an item:

Visible-to-All (or Storage): Committed versions labeled with a cts that is
less than or equal to the starting timestamps sts of all currently executing
transactions, thus, visible-to-all transactions unless overwritten.

Visible-to-Some (or Cache): Committed versions labeled with a cts that is
greater than the starting timestamp sts of some currently executing trans-
actions, thus, invisible to such transactions even if not overridden. Keeping
these versions separate from those visible-to-all avoids non-repeatable reads.

Visible-to-One (or Temporary): Uncommitted versions associated with a
single transaction. These versions ensure that a transaction reads its own

4 N. Faria et al.

writes and at the same time avoid causing dirty reads in concurrent trans-
actions.

When a version is written, it starts in the visible-to-one state, proceeds to
visible-to-some when committed, and eventually becomes visible-to-all as other
concurrent transactions finish. Some systems might in fact keep around some
obsolete versions, visible-to-none, after a newer visible-to-all version exists.

When reading, a transaction first considers its own visible-to-one versions,
then those visible-to-some – considering the timestamp – and finally those visible-
to-all. This process, which obtains correct versions for all data items requested
by some transaction, is the snapshot reconstruction and is the focus of this paper.

This distinction of versions in terms of visibility is not how most multi-
version systems are described but is key to our insight in Section 3. Instead,
systems are usually described in terms of strategies used to physically store dif-
ferent versions. As an example, PostgreSQL keeps them all in the main heap/file,
explicitly tagged with t xmin and t xmax that can be compared to current vis-
ibility boundaries, termed the snapshot. This avoids copying old data when new
versions are added, at the expense of keeping obsolete versions until vacuumed
[27, 29]. Oracle labels versions with the system change number (SCN) [8, 11] and
these reside: in the main heap/file, while visible-to-one and locked, latest visible-
to-some, or if visible-to-all; other visible-to-some versions are kept separately in
rollback segments. This optimizes for short-lived transactions, where a new ver-
sion quickly becomes visible-to-all. A different example is provided by Spanner,
which keeps visible-to-one versions directly in the client in unlogged structures
and takes advantage of versioning in BigTable to manage committed versions,
visible-to-some or visible-to-all [14].

2.3 Simplifying assumptions

Besides snapshot reconstruction, Snapshot Isolation requires precluding concur-
rent updates to the same item. As an example, Oracle and PostgreSQL rely on
aborting transactions in lock queues on commit to ensure that the first com-
mitter wins. In distributed systems, such as Omid [19], this is achieved with a
centralized validation server. A recovery mechanism is also required and usually
relies on logging to ensure atomicity and durability. In this paper, we omit both
of these important issues and focus exclusively on the read path for snapshot
reconstruction.

We make the additional simplifying assumption of not considering the abil-
ity of a transaction to read its own writes, i.e., we ignore visible-to-one (or
temporary) versions during snapshot reconstruction. Moreover, we assume that
all writes are done atomically at commit time, as this simplifies representation
and the manipulation of timestamps. Our proposal could be extended to accom-
modate such possibilities, although the current simpler form would already be
useful and is actually how some systems work [14].

Towards Generic Fine-Grained Transaction Isolation in Polystores 5

a) S b) S Cache c) S Snapshot
k v k v from to deleted k v
k1 v1 k1 v01 1 4 false k1 v10
k2 v2 k1 v10 5 20 false k2 v2
k3 v3 k1 v100 21 ∞ false k4 v4
k4 v4 k3 ⊥ 4 ∞ true

Fig. 1: Example of the conversion of structure S and resulting snapshot for trans-
action T (T ’s starting timestamp = 15).

3 Proof-of-Concept

3.1 Version representation

The first pillar of our proposal is the use of regular tables or collections to hold
versions with different visibilities according to Section 2.2, in contrast to using
custom data structures encapsulated within a transactional storage manager
layer. In detail, we separate visible-to-all (or storage) from visible-to-some (or
cache) versions. The approach could be extended by considering a third table or
collection for visible-to-one (or temporary) versions, which we are not addressing
in this proof-of-concept.

Our key insight, which makes our proposal suitable for a polystore and com-
patible with a wide spectrum of datastores, is the following: It is not neces-
sary to keep individual version numbers for visible-to-all (or storage) versions.
The reason for this is that, by definition, all these versions are visible to all
transactions unless overwritten. Therefore, their final visibility depends only on
whether reconstruction picks up a more recent version while traversing cached
(visible-to-some) versions. In other words, it is as if we consider that all storage
(visible-to-all) versions are implicitly labeled with ts− 1, where ts is the oldest
version in cache (visible-to-some).

The first corollary is that a transactional update and query system can be lay-
ered on top of an existing datastore without changing its content, in particular,
without polluting data with additional version meta-data or multiple versions
for each item, which would break compatibility with existing non-transactional
applications. The second corollary is that the datastore does not need to be able
to filter versions, which is hard or even impossible to do in pure key-value stores.
In fact, previous transaction isolation systems that can be layered on existing
datastores, such as Spanner or Omid, assume that the datastore can hold and
filter versions or, in the latter, store additional version meta-data with each item.

In detail, our general approach is that for each storage table (S) in any of the
supported datastores, we create an additional table for the corresponding visible-
to-some versions (S Cache). The cache accommodates data with the original
schema plus three extra fields: from and to, which specify a record’s validity,
and deleted, which identifies deleted records. The primary key for this table
is composite, with the original key in the base storage table and from. As
this table is not used by non-transactional applications, and only indirectly by

6 N. Faria et al.

Option 1

Option 3
Storage

Cache

σfrom ≤ sts ≤ to

πk

ρCache

Storage ▷ Cache

πStorage.k,Storage.v

Cache

σfrom ≤ sts ≤ to ∧ ¬deleted

πk,v

∪

B
Option 2

A

C

Fig. 2: Logical plan for snapshot reconstruction.

transactional applications, the additional data do not create a compatibility
issue.

Figure 1 provides an example. Figure 1(a) shows some base storage table
S with key k and value v. Depending on the application and the underlying
datastore, both k and v can be composite values. The base table contains items
with keys k1 to k4 with corresponding base values v1 to v4. Figure 1(b) shows
the version cache table, added by our proposal. In detail, S Cache shows that
the value for k1 has been updated three times: v01 is valid from timestamp 1 to
4; v10 from 5 to 20; and v100 from 21. We can also see that k3 has been removed
by version 4.

3.2 Snapshot reconstruction

The second pillar of our proposal is that we describe snapshot reconstruction for
each transaction as a query to the common query engine. This is made possible
by representing versions of items with different visibility as regular tables or
collections.

Figure 2 outlines the logical query used to reconstruct each table in a trans-
action’s snapshot. One branch (A) finds out which keys in the cache (visible-to-
some) are relevant considering the current transaction’s starting timestamp sts.
These keys are used to filter out the corresponding rows from storage (B). The
result is merged with values that were updated or inserted, from the cache (C).
A complex query involving multiple tables requires executing this logical plan
for each table.

Figure 1(c) shows the example of the reconstructed snapshot for a transac-
tion reading from starting timestamp sts = 15. Records selected in each table
are highlighted in green, and tombstones hiding items in red. In detail, k1 has
been recently updated and the appropriate value corresponding to the starting
timestamp of 15 is selected from S Cache, avoiding an even more recent value
with timestamp 21. k3 is present in S Cache as a tombstone and thus is removed
from the snapshot. Finally, k4 and k2 are obtained from the base storage table.

Towards Generic Fine-Grained Transaction Isolation in Polystores 7

In short, by using a query for reconstructing the snapshot, we are able to
provide isolation while, at the same time, provide a simpler alternative to special-
ized transactional layers or modifications to multiple datastores. It is, however,
interesting to determine to what extent the resulting performance is acceptable.

3.3 Execution alternatives and optimization

The attainable performance is related to the possibility of finding an optimal
physical plan for the proposed reconstruction query. Defining snapshot recon-
struction as a query at the common query engine level opens up the possibility
of alternative physical plans, leading to decisions by the database administrator
and the automatic optimizer.

The key decision is the placement of the version cache table relative to the
original storage table. Ideally, it would be placed right next to the original stor-
age table, i.e. the same datastore, providing optimal data locality and enabling
the entire reconstruction plan to be pushed down. However, since the underlying
query engine might not support joining the different structures, this solution is
not viable in all cases. Therefore, the version cache can be placed in a differ-
ent datastore, that should be selected to provide optimal performance for the
required operations. In systems such as CloudMdsQl, auxiliary tables can be
stored in the common query engine itself, instead of an external datastore.

The next decision is how the logical query plan is distributed across the
common query engine and external datastores. Depending on where each cache
table is placed relative to the corresponding storage table and the capabilities
of the query engine in the external datastore, there are three main options for
what can be delegated to the datastore, depicted by dashed lines in Figure 2:
(1) the entire plan, (2) filtering out irrelevant keys, (3) or nothing.

Finally, when considering snapshot reconstruction sub-plan as part of a larger
query, an optimizer should be able to globally reorder and select physical opera-
tors. For instance, when executing a join operation, the query engine might opt
for first joining the caches for different tables and obtain an empty result, thus
avoiding the need to filter the storage. To quickly assess if these alternatives
have a substantial impact on execution time, which justifies using an optimizer,
and if the resulting overhead is tolerable, we resort to an experiment.

4 Experiment

We use a polystore inspired by CloudMdsQL [6], with MongoDB and Cassan-
dra as datastores. Briefly, queries are written with a low code visual builder or
the corresponding SQL-like language, with embedded native queries for differ-
ent datastores. The common query engine is based on PostgreSQL, using the
FDW interface for datastore wrappers. This system includes custom wrappers
for Cassandra and MongoDB that optimize filter push-down, by combining them
with native query languages. While MongoDB’s aggregation pipeline is expres-
sive enough to build the entire snapshot natively, the same is not possible in

8 N. Faria et al.

Table 1: Performance of the different plans with MongoDB and Cassandra.

11682 17 151 5 7 6 8 5 15702 2 6 1 1
13 9 10 14 11 12 46 12 15 1 1 1 0
13 5 8 100 94 98 95 94 28 4 9 10 8

15266 15 156 6 10 7 5 6 19740 2 5 1 2
299 171 5.7K 1.4K 1.4K 1.4K 93 1.9k 8842 7 14 7 10

Cassandra, and as such it relies exclusively on the common query engine to join
the cache with the storage.

Therefore, we have multiple steps where the query is transformed and pos-
sibly optimized: (1) in the initial translation to PostgreSQL SQL; (2) within
PostgreSQL itself; (3) in the wrapper; and finally (4) in the datastore itself. We
use step 1 to determine placement and step 3 to push-down selections and pro-
jections. We have, however, limited control of step 2 in how we re-write the query
in step 1 or how we provide statistics back in step 3. We deployed the system on
two Google Cloud instances (8 N1 vCPUs, 8GB RAM, 500GB SDD), located on
us-east1 and us-east4 (RTT of 11ms), one hosting the query engine and the
other the MongoDB or Cassandra datastore.

Our experiment consists in running various simple queries – select all (re-
turns all rows), filter (returns one row), small join (joins one row), large join
(joins all rows), and aggregation (performs a sum) – on TPC-C’s order line and
item tables, stored in both MongoDB and Cassandra. By manipulating place-
ment of tables and the common query engine, we obtain several physical plans.
When using MongoDB these are: native Group (NG, equivalent to Postgres’s
Order+Distinct [2]); and native Lookup (NL, equivalent to Postgres’s Left
Join [3]). Plans 2 and 3 make use of Full Join (FJ), Left Join (LJ), Not
In (NI), Not Any (NA), and Order+Distinct (OD). For Cassandra, given
the absence of a native query engine, we use only FJ, LJ, NI, and OD.

Table 1 displays the read overhead comparatively to the transaction-less al-
ternative. The first conclusion is that different physical plans have a profound
impact on query execution time, up to 58× worse in one scenario! Most strik-
ingly, it is clear that different plans are optimal in different scenarios, which is
a compelling argument for the use of an optimizer.

Finally, these results let us infer a transactional read overhead under 10%
for most cases with both datastores, which compares favorably to the measured
cost of corresponding transactional mechanisms in a traditional SQL database
system [20]. The exception is the aggregation query with MongoDB. While the
Not Any approach can execute the partial aggregation natively in MongoDB,
greatly reducing data transfer, the engine filters the storage with the cache keys
using, for this particular case, a suboptimal index scan implemented with the

Towards Generic Fine-Grained Transaction Isolation in Polystores 9

keys’ bounds. Since each of the thousands of keys are completely different, the
scan will consider thousands of bounds. For this case, a better alternative would
be a hash anti join, which should bring the overhead closer to the other queries.

5 Discussion

In this paper we address a challenge, transaction isolation in polystores, that has
seen very little previous attention, even if identified as a key research challenge
[28, 30]. Transactional support is a challenge even in multi-model datastores,
naturally more integrated than polystores, where support for multi-model trans-
actions seems to be non-existent [24].

The main competing approach for transactional isolation in polystores is
Polypheny-DB [32]. In contrast to our proposal, which aims at running read-
only transactions with little interference and at fine-grained conflict resolution
for update transactions, Polypheny-DB assumes two-phase locking with coarse
granularity, which limits concurrent updates and makes them conflict with read-
only transactions.

We are also aware of a different proposal that has been prototyped in Cloud-
MdsQL [22], as part of the same research project. Like our current proposal, it
aimed at Snapshot Isolation and fine-grained conflict resolution but it relied on
the implementation, from scratch, of a custom wrapper, or even core changes,
for each datastore. It also assumed the version cache is always co-located, which
often resulted in changing of the native schema.

Similar motivation can be found in DeltaLake [7], aimed at incremental load-
ing or correction of data in a data lake with coarse-granularity. In contrast to our
proposal, it is not aimed at polystore but only at data in Parquet files directly
managed by Spark. Therefore, snapshot reconstruction in DeltaLake boils down
to reading the right subset of file fragments, making updates and removals very
costly as a new version of affected files needs to be written. It is also not clear
how it would be extended to polystores.

Our approach is to define transactional isolation in terms of additional ta-
bles, managed themselves within the polystore, and generic queries that can be
mapped to a common query engine layer and multiple datastores. This takes
advantage of query optimization to achieve the optimal execution plan for each
particular polystore configuration. In fact, a preliminary experiment shows that
the overhead of transactional isolation is comparable to what has been measured
in traditional SQL systems [20].

An interesting outcome of this experiment regards the feasibility of the pro-
posed approach: To what extent keeping updated versions in a separate table
can be reconciled with full use of the interface of each datastore? Namely, can
a native query for some datastore always be modified to account for such ver-
sions? In our experiment, this is very easy to do with a key-value store such as
Cassandra, where returned values can easily be replaced. Our experience with
MongoDB is different: We cannot easily patch the result from a native query,
which can be an arbitrarily complex “aggregation pipeline.” On the other hand,

10 N. Faria et al.

this makes MongoDB expressive enough that the query can be modified to the
reconstruction by itself. We postulate that this might be generally true: When-
ever the native query engine is complex enough to make patching the result hard,
it should be expressive enough to be itself used for reconstruction.

The main threat to the validity of our experiment is that we omit the write
path. We expect to approach this by defining how updates on a view should be
translated to changes in the cache table, which can be implemented, for example,
using instead of triggers or rules [4]. This possibility is limited by known
bounds on updatable views as the reverse mapping may not always exist [12]
and the challenges of translating an update u to a view V into a set of updates
U to the underlying data D, namely [15, 16]. Additionally, we have to consider
multiple data models and, in the CloudMdsQL, the effect of ad hoc views, for
which we can resort to bi-directional transformations, with weaker guarantees
on update properties [10, 25]. Finally, we have to coordinate the recovery of
heterogeneous multi-statement transactions with the various recovery guarantees
of individual datastores.

We can thus identify several lessons learned and outstanding challenges for
transactional polystores:

Optimization and DBA are needed. We have shown that structuring snapshot
reconstruction as a data processing problem allows optimization (different plans
are optimal in different conditions) and provides an opportunity for a DBA to
intervene.

Useful for different datastores. Datastores with a more complex QE make it
harder to store changes and reconstruct the snapshot outside (e.g. MongoDB)
than simple key-value stores, but on the other hand, they make it easier to use
their own QE for reconstruction, which makes the approach feasible across a
large spectrum of datastores.

Datastore interfaces matter. It is highly relevant that the data-store language
is amenable to processing and manipulation, without having to rewrite a lot. For
instance, MongoDB’s aggregation pipeline is ideal and much more complex than
the SQL-like in Cassandra. It is thus a challenge to provide this and still be
user-friendly for writing native queries.

Various isolation criteria are possible. Polystores are inherently distributed
and likely over a WAN, making strict snapshot isolation problematic. Moreover,
it is likely that one size does not fit all applications is also true in terms of
isolation level. A possible alternative is TOPSI [18].

Update processing is an open problem. Updates issued at the common QE
level are issued on views. This means that they have to be translated back to
the original data model for the underlying datastore.

Interaction with native readers and writers is an open problem. Our proposal
provides transactional isolation when all readers and writers access datastores
through the common query engine. A consistent view of a prefix of updates to
native readers should also be possible by judiciously scheduling checkpointing
operations. It is unclear, however, if it is possible to do the reverse: Allowing
native clients to update datastores without disturbing isolation.

Towards Generic Fine-Grained Transaction Isolation in Polystores 11

References

1. Distributed transaction processing: The xa specification (1991), https://pubs.

opengroup.org/onlinepubs/009680699/toc.pdf
2. Mongodb 4.4 manual - aggregation pileline stages: $group (2020), https://docs.

mongodb.com/manual/reference/operator/aggregation/group/
3. Mongodb 4.4 manual - aggregation pileline stages: $group (2020), https://docs.

mongodb.com/manual/reference/operator/aggregation/group/
4. Postgresql documentation - 40.4. rules on insert, update, and delete (2020), https:

//www.postgresql.org/docs/13/rules-update.html
5. Transaction management - the neo4j java developer reference v4.3 (2020), https:

//pubs.opengroup.org/onlinepubs/009680699/toc.pdf
6. Alonso, A., Abreu, J., Nunes, D., Vieira, A., Santos, L., Soares, T., Pereira,

J.: Building a polyglot data access layer for a low-code application develop-
ment platform - (experience report). Lecture Notes in Computer Science, Springer
(2020). https://doi.org/10.1007/978-3-030-50323-9 6, https://doi.org/10.1007/
978-3-030-50323-9_6

7. Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy, M., Torres, J., van
Hovell, H., Ionescu, A., undefineduszczak, A., undefinedwitakowski, M., Szafrański,
M., Li, X., Ueshin, T., Mokhtar, M., Boncz, P., Ghodsi, A., Paranjpye, S., Sen-
ster, P., Xin, R., Zaharia, M.: Delta lake: High-performance acid table stor-
age over cloud object stores. Proc. VLDB Endow. 13(12), 3411–3424 (Aug
2020). https://doi.org/10.14778/3415478.3415560, https://doi.org/10.14778/

3415478.3415560
8. Bamford, R.J., Jacobs, K.R.: Method and apparatus for providing isolation levels

in a database system (Feb 9 1999), uS Patent 5,870,758
9. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique

of ansi sql isolation levels. ACM SIGMOD Record 24(2), 1–10 (1995)
10. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updat-

able views. In: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. pp. 338–347 (2006)

11. Burleson, D.K.: Oracle internals: tips, tricks, and techniques for DBAs. CRC Press
(2017)

12. Codd, E.F.: Recent investigations into relational data base systems. Tech. Rep.
RJ1385, IBM (4 1974)

13. Cooper, J., James, A.: Challenges for database management in the internet of
things. IETE Technical Review 26(5), 320–329 (2009)

14. Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat,
S., Gubarev, A., Heiser, C., Hochschild, P., et al.: Spanner: Google’s globally dis-
tributed database. ACM Transactions on Computer Systems (TOCS) 31(3), 1–22
(2013)

15. Dayal, U., Bernstein, P.A.: On the updatability of relational views. In: VLDB.
vol. 78, pp. 368–377. Citeseer (1978)

16. Dayal, U., Bernstein, P.A.: On the correct translation of update operations on
relational views. ACM Transactions on Database Systems (TODS) 7(3), 381–416
(1982)

17. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe,
B., Kepner, J., Madden, S., Maier, D., Mattson, T., Zdonik, S.: The
bigdawg polystore system. SIGMOD Rec. 44(2), 11–16 (Aug 2015).
https://doi.org/10.1145/2814710.2814713, https://doi.org/10.1145/2814710.

2814713

12 N. Faria et al.

18. Faria, N., Pereira, J.: Totally-ordered prefix parallel snapshot isolation. In: Pro-
ceedings of the 8th Workshop on Principles and Practice of Consistency for Dis-
tributed Data. PaPoC ’21, Association for Computing Machinery, New York,
NY, USA (2021). https://doi.org/10.1145/3447865.3457966, https://doi.org/

10.1145/3447865.3457966
19. Gómez Ferro, D., Junqueira, F., Kelly, I., Reed, B., Yabandeh, M.: Omid:

Lock-free transactional support for distributed data stores. In: 2014 IEEE
30th International Conference on Data Engineering. pp. 676–687 (2014).
https://doi.org/10.1109/ICDE.2014.6816691

20. Harizopoulos, S., Abadi, D.J., Madden, S., Stonebraker, M.: Oltp through
the looking glass, and what we found there. In: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data. p.
981–992. SIGMOD ’08, Association for Computing Machinery, New York,
NY, USA (2008). https://doi.org/10.1145/1376616.1376713, https://doi.org/

10.1145/1376616.1376713
21. Hellerstein, J.M., Stonebraker, M., Hamilton, J.: Architecture of a

database system. Found. Trends Databases 1(2), 141–259 (Feb 2007).
https://doi.org/10.1561/1900000002, https://doi.org/10.1561/1900000002

22. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira,
J.: CloudMdsQL: querying heterogeneous cloud data stores with a com-
mon language. Springer Distributed and Parallel Databases pp. 1–41 (2016).
https://doi.org/10.1007/s10619-015-7185-y

23. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

24. Lu, J., Holubová, I.: Multi-model databases: a new journey to handle the variety
of data. ACM Computing Surveys (CSUR) 52(3), 1–38 (2019)

25. Macedo, N., Pacheco, H., Cunha, A., Oliveira, J.N.: Composing least-change lenses.
Electronic Communications of the EASST 57 (2013)

26. Schultz, W., Avitabile, T., Cabral, A.: Tunable consistency in
mongodb. Proc. VLDB Endow. 12(12), 2071–2081 (Aug 2019).
https://doi.org/10.14778/3352063.3352125, https://doi.org/10.14778/

3352063.3352125
27. Stonebraker, M.: The design of the postgres storage system. In: Proceedings of the

13th International Conference on Very Large Data Bases. p. 289–300. VLDB ’87,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1987)

28. Stonebraker, M.: The case for polystores. ACM SIGMOD Blog (2015), https:

//wp.sigmod.org/?p=1629
29. Suzuki, H.: The internals of postgresql: Chapter 5 concurrency control (2021),

https://www.interdb.jp/pg/pgsql05.html
30. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query pro-

cessing across heterogeneous data models: A survey. In: 2017 IEEE In-
ternational Conference on Big Data (Big Data). pp. 3211–3220 (2017).
https://doi.org/10.1109/BigData.2017.8258302

31. Vogels, W.: Eventually consistent. Communications of the ACM 52(1), 40–44
(2009)

32. Vogt, M., Hansen, N., Schönholz, J., Lengweiler, D., Geissmann, I., Philipp, S.,
Stiemer, A., Schuldt, H.: Polypheny-db: Towards bridging the gap between poly-
stores and htap systems. In: Gadepally, V., Mattson, T., Stonebraker, M., Kraska,
T., Wang, F., Luo, G., Kong, J., Dubovitskaya, A. (eds.) Heterogeneous Data
Management, Polystores, and Analytics for Healthcare. pp. 25–36. Springer Inter-
national Publishing, Cham (2021)

