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Background
Tissue homeostasis results from an intricate gene regulation network that when dis-
rupted can lead to disease. Gene expression is an intermediate state linking the genome 
to phenotypic outcomes. Biomedical studies have relied on the analysis of gene expres-
sion levels to disease state, progression, outcome and treatment [1–3]. Changes in gene 
expression have helped identify patterns and signatures associated with disease (e.g. 
community-acquired pneumonia [4] or tuberculosis [5]), improve the understand-
ing of aging conditions [6, 7] and complement genetic information in Mendelian dis-
ease diagnosis [8]. Furthermore, analyzing these alterations can facilitate the discovery, 
development and assessment of novel drug treatments [9–11], the optimization of drug 
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application and dosage in cancer therapies [12, 13], or the prediction of response to ther-
apy [3].

Advances in sequencing technologies have produced an unprecedented amount of 
multi-modal molecular data. This opened the possibility for a thorough and informa-
tive interrogation of genotype-phenotype associations on complex diseases, presenting 
new opportunities for precision medicine. However, finding statistically significant and 
meaningful associations between molecular data and phenotypic or clinical annotations 
remains a hard challenge. This difficulty is exacerbated by the high dimensionality of the 
data and, as is the case with gene expression, a considerable stochastic component.

Machine Learning (ML) seeks to automatically capture statistical associations in data 
while improving knowledge with additional evidence [14–16]. ML is of particular inter-
est in computational biology because it can describe biological phenomena without the 
need to explicitly model them. Supervised ML builds mathematical models that map the 
input data, described by several attributes or features, to the corresponding output value 
or label for each instance or sample. The model can then be used to predict the outcome 
of unseen or incoming data. Figure 1 shows a general flowchart of a supervised learning 
(SL) pipeline: (1) train/test data split; (2) model training; (3) model evaluation. Discrete 
categories are determined through classification tasks (Fig. 1a); when predicting numeri-
cal values, the task is called regression (Fig. 1b).

In the context of gene expression analysis, there are several examples of phenotype 
inference from predictive models. Classification has been used for predicting therapeu-
tic or drug response [17, 18], as well as cancer molecular subtype from gene expression, 
DNA methylation data, or both [19]. Use cases for regression include the prediction of 
expression levels of target genes from landmark genes [20] or mutational effects from 
DNA sequences [21].

While ML provides an adequate solution for statistical association challenges, it often 
incurs substantial computational demands. Processing power and memory requirements 
are amplified by the size of the data and the complexity of the models. When building 

Fig. 1 Supervised learning for predicting cancer-related phenotypes from gene expression data. a 
Classification identifies target labels, including cancer subtypes; b regression can predict progression and 
outcome measures, such as disease-free intervals. After the data is partitioned into training and test sets, a ML 
algorithm is fit on the training data. The model is evaluated using hold-out test data
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models in a single machine, such as a laptop, it might be too costly or even impossible 
to load large amounts of data into memory. Moreover, while high-performance comput-
ing (HPC) solutions are capable of meeting these requirements, it is not always trivial to 
fully leverage these resources. Therefore, implementations for scalable computing of ML 
and other data analytics tasks are required.

There are several frameworks for scalable data analytics available for the widely-used 
Python programming language. In this review we will focus on a particular framework 
called Dask [22]. Dask divides data into smaller blocks on which to perform highly paral-
lel computations, thus allowing larger data sets to fit in the memory of single machines. 
It tightly integrates with existing libraries for Python data analytics and shares a similar 
interface for implementation, which minimizes the need for code rewrites and facilitates 
the transition to HPC environments. Here we explore the potential of Dask for scalable 
ML and data science, applied to bulk and single cell transcriptomics, providing usage 
recommendations supported by numerous code examples and performance tests.

This paper begins with a review on the need for scalable data analysis in computational 
biology. We start by describing the standard supervised ML workflow and how it can be 
adapted for gene expression data analysis. In the following section, we look into the spe-
cifics of the Python programming language and how it can be used for ML and data sci-
ence, discussing its advantages and limitations. We then introduce the general concepts 
of distributed and parallel computing and enumerate different scalable ML frameworks, 
with a focus on Dask. We perform several benchmarks and comparisons highlighting 
the advantages of Dask. Finally, we propose guidelines for the efficient use of Dask for 
transcriptomics analysis. This review is supported by examples of different tasks, com-
parative performance tests, and supporting code.

Building gene expression predictive models

Gene expression predictive models are built using supervised learning, which often rely 
on the data being stored in a structured format, such as tables, see Fig. 1. The labels (cat-
egorical or numerical) represent the phenotype or the clinical information to be inferred.

Supervised learning pipelines encompass several key steps [23]. First, gene expression 
and phenotype data are loaded. At this point, preprocessing can be applied to prepare 
the data for the remaining steps. The data is then split into training and test sets. ML 
algorithms learn from the training data to generate a predictive model. In supervised 
learning, training consists in finding the coefficients, known as model parameters, that 
provide the best mapping between input features and output labels, as judged by inter-
mediate validation scores. Lastly, the trained model is evaluated on the hold-out test set. 
The test set is used to estimate the generalization error, i.e. how well the model behaves 
on unseen data. To ensure the robustness of the generalization error, k-fold cross-val-
idation (CV) [24, 25] is customarily performed during model training. This strategy 
consists in creating several (k) train/test partitions from the original dataset, repeating 
the model-building process k times, and averaging out k evaluation scores. If the model 
reaches an evaluation score that is deemed sufficiently high for a specific application, it 
can be deployed to work with new incoming data.

For the most part, the development of transcriptomics predictive models follows the 
traditional approach. However, because gene expression levels obtained from RNA-seq 
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experiments are noisy and have a large amplitude, data preprocessing may have an 
impact on downstream results. Therefore, feature selection, scaling and normalization 
are required [26–32]. Feature selection removes less informative genes, for example 
those with low variability or low expression levels. It can also select biologically-relevant 
gene subsets (e.g. protein coding). Scaling is used to attenuate fold differences in expres-
sion ranges, typically by shifting the data from a linear to a logarithmic scale. Sample 
normalization methods account for differences that arise from the sequencing process, 
like library size, batch effects and gene structure.

Although models are trained automatically, the building process can be controlled 
by static values defined a priori by the user, known as hyper-parameters [33]. Different 
hyper-parameter values influence the performance of the final predictive model in dif-
ferent ways. Therefore, hyper-parameter optimization (HPO) can be performed during 
CV in an attempt to lower the generalization error. If the model reaches an optimized 
performance according to the evaluation measures, the model is selected and applied to 
new incoming data. Determining the best set of hyper-parameter values is a computa-
tionally expensive combinatorial problem. It requires traversing a multidimensional grid 
of values, with a model to be trained and tested for each combination. Random search 
alleviates this issue by sampling a limited number of hyper-parameter combinations [34].

To accurately estimate the performance of an ML algorithm, k-fold CV and HPO can 
be combined into a strategy known as nested CV. While this provides exhaustive per-
formance estimates, it further exacerbates the computational cost incurred by the two 
techniques in isolation.

Scientific computing with Python

Python is an interpreted, high-level and general-purpose programming language with 
a focus on readability [35]. It offers interactive and scripting modes that allow for quick 
prototyping and deployment of a broad range of scientific applications. Data science and 
ML are areas where Python’s role has greatly expanded in recent years. The Scientific 
Python Environment (SPE) is at the core of this expansion. The SPE is based on sev-
eral highly efficient libraries that support numerical and scientific computation, namely: 
NumPy [36], for storing and operating over large and multi-dimensional arrays and 
matrices; Scipy [37] for fundamental routines and algorithms in scientific and technical 
computation; pandas [38] for data manipulation and analysis; matplotlib [39] for plot-
ting and visualization; and scikit-learn [40] for traditional ML. Python and the SPE have 
thus become popular tools for data science and ML [23]. However, as the size of the data 
increases and the tasks become more complex and expensive there is a need for improv-
ing program efficiency, namely in terms of execution runtime.

Python concurrent and parallel computation

Parallelism and concurrency are two approaches for improving the efficiency of a pro-
gram. Their use is highly dependent on the underlying architecture of the central pro-
cessing unit (CPU). In Python, they can be implemented through native packages such 
as multiprocessing and multithreading.

A process is an independent instance executed in a processor core or node with dedi-
cated memory space. To speed up computation in CPU-intensive tasks, multiprocessing 
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spawns multiple processes that execute parts of a task in parallel. A thread is run within 
a process and allows parts of a program to run concurrently when there is a separate 
flow of execution. Multiple threads can be run in the same process, sharing the same 
memory space. This reduces the overhead associated with copying and moving data, and 
making code faster and safer to execute. Multithreading allows concurrency by progress-
ing multiple independent tasks simultaneously.

When multiple threads are launched at the same time, problems may arise if computa-
tions are performed out of order. Standard Python implementations address this issue by 
enforcing the global interpreter lock (GIL) mechanism. The GIL ensures that only a sin-
gle thread is run at a time. To overcome this important limitation, it is necessary to find 
solutions for carrying out computations outside the GIL, either by rewriting code in a 
different language like C or using specialized libraries. In particular, SPE libraries imple-
ment several strategies for speeding up computation. For example, NumPy and SciPy can 
efficiently perform numerical linear algebra operations and bypass the GIL mechanism 
by leveraging a low-level Basic Linear Algebra Subprograms implementation known as 
OpenBLAS [41, 42]. SPE libraries also come with the native capability to spawn multiple 
processes, or jobs, to parallelize computation across several CPU cores. Yet, increasing 
the number of processes does not always speedup computation. In some cases, excessive 
parallelization can even be detrimental to overall performance. Therefore, understand-
ing how multiprocessing processes might nest or interact with each other is critical for 
improving program performance.

Limitations of the scientific Python ecosystem

For all their promise, the advantages of parallelism can be difficult to achieve. To bypass 
the GIL, multiprocessing has to launch a Python instance containing a full, in-memory 
copy of the data for each additional CPU core in use. Furthermore, certain ML tasks 
such as nested CV or hyper-parameter optimization incur heavy computational bur-
dens. Hence, the parallelization of ML pipelines rapidly fills available memory. Fur-
thermore, increases in data size lead to difficulties in data processing and analysis. The 
limitations of a single machine become apparent when datasets no longer fit comfort-
ably in memory or take too long to load and process. One approach to alleviate these 
issues would be to share the workload across several machines, but in Python this is not 
a straightforward task. Data science libraries like pandas or scikit-learn are not designed 
specifically to operate on distributed systems [43]. It is thus imperative to find compu-
tational paradigms that can handle multiple ML models simultaneously built from large 
or massive datasets and take full advantage of all available CPU cores through efficient 
parallelization, while offering the possibility to scale beyond a single machine.

Scalable data science

The transformative power of data science is supported by advances in computing capa-
bilities that enable the production, collection, storage and processing of increasingly 
larger amounts of data. Thus, the computational requirements of large datasets are an 
important bottleneck in data analysis. This bottleneck can be overcome by improving 
the quality and/or quantity of computational resources available to a single machine 
(scaling-up), or spreading computational load across several machines (scaling-out).



Page 6 of 20Moreno et al. BMC Bioinformatics          (2022) 23:514 

Scalable data analytics frameworks can assist in implementing these strategies, ensur-
ing that available resources are fully and expanding computational capabilities in tasks 
such as ML. For example, when a dataset does not entirely fit in memory, out-of-core 
computation can be a solution. Out-of-core algorithms are optimized to efficiently fetch 
and transfer batches of data from disk to memory and to process them in smaller blocks, 
expanding total available memory.

For several years, the Apache Spark [44, 45] framework has been a popular choice for 
scalable data analytics. Spark is a unified engine written in Scala for distributed data pro-
cessing. As a part of the all-in-one Apache ecosystem, Spark interfaces well with other 
Apache projects and is capable of integrating and parallelizing computation across sev-
eral languages, namely Java, R, and Python (via the Pyspark library). However, integra-
tion with these languages requires additional programming efforts and often incurs 
serialization costs, as abstract data structures need to be converted between languages.

As such, several frameworks and tools are currently being developed under the Python 
ecosystem to scale one or several steps of data analysis across several CPUs (and, in 
some cases, GPUs) while minimizing the need for code rewrites (Table 1). Some frame-
works focus on out-of-core parallelization of large tabular datasets, while others provide 
support for a complete analysis pipeline in a distributed environment. Overall, there is 
an ongoing effort to develop scalable data science frameworks that provide seamless 
integration and compatibility with existing SPE code. These frameworks aim to alleviate 
the burden associated with technical implementation, allowing researchers to focus on 
scientific questions.

From among the solutions for scalable data science in Python, this paper highlights the 
Dask framework [22].

Scaling computational biology with Dask

Dask has been applied to a variety of scalable problems in computational biology. It has 
been used to introduce parallel computation in molecular dynamics analysis and simu-
lations [46–49], efficiently handle genotype data as arrays [50], assess the reliability of 
methodologies for the analysis of human brain white matter connections [51], as a com-
ponent in general neuroimagining pipelines [52], and for powering a workflow in gene 
regulatory network model exploration [53].

Applications of Dask specific to omics data analysis include scaling the reconstruc-
tion of gene regulatory networks from single-cell yeast RNA [54], integrative analysis 
of multi-omics data [55], inferring gene regulatory networks from large single-cell gene 
expression datasets [56, 57], analysis of high resolution rRNA sequencing data from 
multiple amplicons [58], and the study of tissue organization and cellular communica-
tions derived from spatial omics data analysis and visualization [59].

Furthermore, Dask plays a supporting role as an underlying component for several 
data science and machine learning tools used in computational biology. For example, 
the GPU-accelerated tool RAPIDS [60] builds on top of the Dask framework in order to 
scale its data preparation and model training steps across multiple GPUs and machines 
[23]. In this assisting capacity, Dask has made it possible to scale single-cell analysis 
pipelines to upwards of millions of cells [61]. In large-scale distributed environments, i.e. 
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supercomputers, Dask has been deployed as a workflow manager for GPU-accelerated 
computation to predict protein structures from genomic sequences [62].

The Dask framework

Dask [22] is a native Python framework that extends the SPE’s capabilities for multi-core 
and out-of-core computation. This allows Dask to scale beyond a single machine and fit 
increasingly large datasets into memory. By cloning the APIs of commonly used libraries 
like NumPy, pandas or scikit-learn, Dask minimizes the changes required to port pre-
existing code [36]. The simplicity of Dask greatly reduces the barrier to entry for ana-
lysts that are new to distributed and parallel computing. This is especially important in 
domains such as computational biology and bioinformatics where data analysis pipelines 
are often developed by scientists without a formal computer science background using 
the SPE in local workstations.

The Dask framework combines blocked algorithms with task scheduling to achieve 
parallel and out-of-core computation. The framework is composed of collections, task 
graphs and schedulers. Collections are data structures that represent and organize the 
data. Task graphs and schedulers determine how computations are performed (Fig. 2).

Dask implements three collection types specialized in building task graphs for struc-
tured and unstructured data: Dask Arrays, Dask Dataframes and Dask Bags. Dask 
Dataframes are limited to two-dimensional tables, while Dask Arrays can have higher 
dimensionality. Dask Dataframes split the dataset into multiple partitions along the 
index. Each partition consists of a pandas Dataframe that can be processed indepen-
dently, parallelizing the workload. Dask Arrays creates chunks by splitting NumPy 
arrays along the index and columns. Bags are a more flexible data type that can hold any 
combination of Python objects. They are particularly useful for working with unstruc-
tured data in tasks such as graph or text mining. Because it mimicks the interface of 
the pandas and NumPy libraries, Dask offers many of the same statistical and analytical 
functionalities.

In addition, Dask provides the more general Delayed and Futures interfaces that oper-
ate as building blocks for implementing custom data structures and algorithms in Dask. 
Like the aforementioned specialized collections, Dask Delayed executes task graphs 
lazily as needed, while Future executes functions eagerly and concurrently across multi-
ple cores and machines.

Fig. 2 Main components of the Dask framework. Collections are processed by task graphs, which are 
executed by schedulers. In a task graph the nodes represent functions (f ) and edges are Python objects (o)
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To efficiently handle collections, Dask builds task graphs with blocked algorithms. 
Blocked algorithms are an approach to out-of-core, distributed computation. Blocked 
algorithms split data into smaller blocks that are loaded on demand and processed in 
parallel [63].

A task graph is a directed acyclic graph used to keep track of all tasks and their order. 
Each node is a function and the edges are objects generated by the preceding function 
node and used as input by the succeeding node (Fig. 2). Graph evaluation is performed 
lazily, meaning that task processing is delayed until computation is explicitly called. Due 
to the great flexibility of blocked algorithms, task graphs can interface with several prob-
lem assignment algorithms, such as task scheduling [64].

Task scheduling allows Dask to achieve parallelization by dividing the program into 
smaller tasks. For instance, when summing three partitions with three numbers each, 
the scheduler will assign one worker to each partition and process them in parallel. Once 
this done, the resulting smaller sums are aggregated into a final solution, Fig. 2.

In Dask, there are two groups of task schedulers: single-machine and distributed. Sin-
gle-machine schedulers leverage local processes or threads, while distributed schedul-
ers operate both locally and across multiple machines. While single-machine schedulers 
do not require setup and incur in a smaller overhead, distributed schedulers are more 
sophisticated and offer more features such as a diagnostics dashboard for monitoring 
performance.

Single-machine schedulers include the threaded scheduler, multiprocessing sched-
uler and single-threaded synchronous scheduler. The single-threaded scheduler has no 
parallelism, performing all computations in a single thread, which facilitates debugging. 
The threaded scheduler leverages a single machine’s entire thread pool, which allows 
for faster computation times for code that releases the GIL. Lastly, the multiprocess-
ing scheduler provides parallelism by assigning tasks to local processes. This is useful 
for bypassing the GIL when it cannot be released, as is often the case with pure Python 
code. However, because inter-process communication is slower than threaded execu-
tion, the multiprocessing scheduler does not always reduce execution times.

While single-machine schedulers ship threads or processes to local thread or pro-
cess pools directly, distributed schedulers launch and interface with computations 
through clients that assign tasks to workers. In Dask, one worker corresponds to one 
process, with access to a worker-specific subset of the thread pool. One of the workers is 
appointed as the master which will coordinate other workers and direct them to execute 
the individual tasks found in graphs. As tasks are completed, workers become free and 
are assigned to any remaining tasks until all tasks are executed.

The primary purpose of distributed schedulers is to parallelize computation in clus-
ters. However, clients for interfacing with distributed schedulers can also be initialized 
locally. This might be desirable for a number of reasons. As previously mentioned, dis-
tributed schedulers grants users with access to a diagnostics dashboard which allows 
them to assess computational performance. Furthermore, distributed schedulers offer 
improved data locality. Data locality consists in the process of moving computations 
closer to where data is stored, which is often more efficient than the reverse operation. 
In such cases, the additional overheard caused by setting up a distributed scheduler 
locally may prove worthwhile. Lastly, the distributed scheduler can leverage additional 
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worker resources, such as additional memory for the local processing of large datasets or 
extra CPUs for CPU-intensive computations.

Methods
The source code for processing the data and performing all analyses can be found at: 
https:// github. com/ marta ccmor eno/ gexp- ml- dask.

Assessing phenotype predictive model performance

Using an XGBoost-powered classifier [20] with default hyper-parameters, we compared 
the performance of the three strategies (Distributed Threads, Distributed Processes and 
SPE) in a single machine environment for several phenotype prediction tasks.

In all cases, expression matrices comprise n sample rows characterized by f gene fea-
ture columns; label vectors have length n. Because all preprocessing steps used Dask, we 
took advantage of the increase in parallelization whenever possible.

After transcriptome profiling, the BRCA gene expression datasets underwent FPKM 
normalization. The dataset has 1,205 samples with BRCA molecular subtype informa-
tion available, profiled across 60,483 genes. Following feature selection of coding genes 
we obtained a second, smaller feature matrix, in which the number of genes was reduced 
to 19,564.

The LUAD/LUSC gene expression matrix contained 776 samples and 19,560 genes. 
These dimensions resulted from filtering for samples of individuals with information 
on the number of cigarettes smoked per day. Only coding gene features were selected. 
Gene expression quantification files for this dataset underwent FPKM and UpperQuar-
tile normalizations.

Synthetic read counts for the SYNTH dataset were generated using compcodeR [65], 
an R package that generates simulated count data. Tweaks in the simulated data distribu-
tion were used to mimic different classes. Simulated counts and their respective classes 
were later subsampled and shuffled with a Python script. The resulting SYNTH dataset 
has 5,000 samples and 20,000 genes.

Generating datasets with different dimensionalities

For dataset subsampling two approaches were applied: (i) sample-wise subsampling, in 
which the top 20,000 genes with higher variance were selected as features, and a vary-
ing number of samples n (200, 600, and 1,205) was randomly sampled; (ii) feature-wise 
subsampling, in which the number of samples was fixed as 1,205 (the total), and varying 
the number of features f was select from among those with the highest variance (1,000, 
20,000 and 40,000).

Cross‑validation

As of the time of writing, Dask has no official CV support; the proposed solution is 
to parallelize computation using joblib. However, this only scales CPU usage and does 
not help with scaling memory. This means that while runtime will be reduced, memory 
usage will peak similarly as in SPE. We have developed our own custom CV script to 
use with Dask in tasks involving gene expression data, which can be found in the follow-
ing repository: https:// github. com/ marta ccmor eno/ gexp- ml- dask. This implementation 

https://github.com/martaccmoreno/gexp-ml-dask
https://github.com/martaccmoreno/gexp-ml-dask
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leverages Dask’s out-of-core capabilities for adding disk drive memory to total available 
memory.

Hyper‑parameter optimization

The performance of Dask and SPE in intensive optimization tasks was evaluated by per-
forming an exhaustive grid search on the coding subset of the BRCA dataset (n1,205 
× f19,564). To that end, a grid containing two values for each of three XGBoost hyper-
parameters was transversed as many times as the total number of combinations (2 × 2 × 
2 = 8). Training set performance was evaluated using 5 × 2 nested CV.

Single‑cell RNA‑seq preprocessing

To assess how Dask performs and compares against SPE in handling scRNA-seq data, 
the following tasks were performed: 

1. Log-normalization of the data (log-norm);
2. Identification and selection of highly variable gene features (feature selection);
3. Data scaling to shift the distribution to a mean of 0 and standard deviation of 1.

This pipeline was applied in a single machine environment using two frameworks, Dask 
and SPE, on single-cell transcriptomes sampled from esophagus tissue. The dataset com-
prised 87,947 samples and 24,245 genes. Smaller dataframes were derived by randomly 
choosing samples and features without replacement.

Results
To highlight the relevance of the use of scalable data analysis frameworks, we bench-
mark and compare the performance of the Dask and SPE frameworks in two scenar-
ios: (i) an end-to-end ML pipeline for phenotype prediction from cancer and synthetic 
bulk transcriptomic data, with and without hyper-parameter optimization; (ii) in the 
preprocessing single-cell RNA-seq data. All tests were performed on a laptop running 
Linux Ubuntu 20.04.2 LTS with a 500 GB SSD, 16 GB of RAM and a multi-core proces-
sor powered by four cores comprising two threads each, with core frequency of up to 4.6 
GHz. or the Dask framework, we have opted to use the Distributed scheduler due to the 
advantages presented in the previous section. Dask Distributed is deployed using two 
configurations: (i) Distributed Threads (DT), which spawns a single worker with access 
to all eight CPU threads in the thread pool; and (ii) Distributed Processes (DP), which 
spawns four workers, each with access to two threads.

Inferring phenotypes from cancer transcriptomic data

Cancer is a complex and heterogeneous disease driven by genetic alterations which often 
result in gene expression dysregulation [66, 67]. RNA profiling [26, 68] of tumoral tis-
sues is widely used to uncover cancer gene signatures. Accurate diagnosis is essential 
to achieve the best clinical outcome [69]. Predictive models of cancer molecular sub-
types have been developed from transcriptomic data [70–74], which can assist clinicians 
deliver specific tumor tailored treatments [75–79], as well as provide further cancer 
subtype stratification [80–82]. Prognostic signatures for assessing patient disease-free 
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survival have been derived with ML from whole-transcriptome data in several tissues 
[81, 83, 84].

Supervised learning tasks

Transcriptome data from the Cancer Genome Atlas (TCGA) [85] was used to show how 
phenotypes can be predicted from tumor-specific gene expression levels. Classification 
and regression models were built with SPE and Dask (Distributed Threads and Distrib-
uted Processes) in various ways. The performance of the three approaches is compared 
in terms of minimum run time, peak memory usage and accuracy for different predictive 
tasks: 

1 Classification of five breast cancer molecular subtypes from breast gene expression 
data sequenced by TCGA (BRCA);

2 Prediction of the number of cigarettes smoked per day in individuals diagnosed with 
lung cancer based on lung gene expression data from TCGA (LUAD/LUSC);

3 Binary classification of synthetic samples from read counts generated in silico using 
different distributions to mimic two distinct classes (SYNTH).

The minimum runtime and peak memory usage values for the three supervised learning 
tasks are shown in Table 2. Minimum runtime is the shortest execution runtime taken 
from three repetitions. This metric was chosen since fluctuations in runtime are usually 
caused by external factors, e.g. other processes running in the background, meaning that 
the smallest value approximates the true execution time for the code under evaluation. 
Memory usage reports the highest value recorded during execution.

For the full BRCA dataset, the DT configuration offered gains of at least 11.82% for 
peak memory usage and 39.4% in runtime compared to DP and SPE. Likewise, DT out-
performed the other two methods for the coding subset of the BRCA datset with gains 
of at least 35.5% and 14.6% for peak memory usage and minimum runtime, as well as the 
LUAD/LUSC dataset with a minimum improvement in performance of 17.6% and 10.1% 
for those same metrics. The results for the SYNTH dataset presented a trade off: while 
DT offered gains of 9.0% for peak memory consumption, DP had a minimum runtime 
that was 36.2% lower.

Dataset dimensionality

In addition to comparing performance for three datasets, we sought to test and com-
pare the performance of the different strategies when applied to datasets with varying 
dimensionality, as they may be distinctively affected by a growing number of features 
(columns) or samples (rows). With subsampling we derived datasets of multiple sizes 
from the full BRCA dataset, see Fig. 3.

Overall, DT outperformed both DP and SPE in all cases, with the lowest peak memory 
usage and minimum runtime irrespective of dimensionality.

Intensive optimization tasks

Hyper-parameter optimization (HPO) performance was assessed for the three strategies 
using the coding subset of the BRCA dataset, see Table 2. DT outperformed the other 
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methods for peak memory usage, with gains of at least 38.6%. Minimum runtime was 
similar for both Dask configurations, with gains of roughly 36% compared to SPE. All 
strategies exhibited similarly high levels of accuracy.

Single‑cell data analysis

Single-cell RNA sequencing (scRNA-seq) is enabling the study of gene expression at an 
unprecedented resolution to characterize complex tissues and disease [86]. The constant 
development of single-cell technologies resulted in an exponential growth in terms of 
cell profiled [87].

scRNA-seq computational analysis workflows follow a series of well-established steps 
[88]. Given the count matrices obtained by raw sequencing data alignment, the data is 
preprocessed before passing through downstream analysis [89]. Given the large amounts 
of data generated, scalable methods are essential for working with scRNA-seq data.

Here, we show how Dask can scale several tasks (log-scale transformation, feature 
selection and scaling) commonly performed in the preprocessing of scRNA-seq data. 
Benchmarks are performed on a dataset sampled from esophagus tissue used to meas-
ure ischaemic sensitivity of human tissue at different time points [90]. The performance 
of DT and DP are compared with SPE relative to the minimum process runtime for dif-
ferent dimensionalities sampled from the complete dataset, see Fig. 4a.

In this scenario, for the lower dimensionality datasets, SPE outperforms both Dask 
Distributed configurations. However, for larger dimensiontionalities, both configu-
rations surpass SPE and are, in fact, the only viable solution as SPE runs out of mem-
ory. Remarkably, the multiprocessing DP approach outperformed DT in all cases. 

Fig. 3 Performance comparison of the three strategies for the subsampled BRCA datasets. Peak memory, 
minimum runtime and classification accuracy were measured. Differences in accuracy resulted from the 
algorithmic implementation specificities of Dask and SPE. The data sizes shown in MB correspond to 
uncompressed tabular files
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To investigate this difference, we looked into the bottleneck for this simple pipeline: 
loading times (Fig. 4b).

Given that loading entire datasets into memory was not possible for higher 
dimensionalities, we tested DT and DP loading times on a subset of the available 
dimensionalities. As expected, loading comprises a considerable portion of runtime 
compared to the full pipeline (around 50%). DP always outperformed DT, meaning 
that even for the smallest dataset (n40k × f10k, with file size 1.8 GB), multiprocess-
ing approaches greatly benefited loading times.

Fig. 4 Runtime comparison between the Dask and SPE frameworks in A the preprocessing and B the full 
loading of scRNA-seq data. Datasets were subsampled for different dimensions. In A, both Dask Distributed 
configurations (Threads and Processes) partially load the data, processing dataset partitions; in B, the entire 
dataset is loaded. Asterisks represent instances when programs ran out of memory. n is the number of rows 
and f the number of features. The file sizes shown in GB correspond to uncompressed tabular files
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Fig. 5 Proposed usage of SPE and Dask for different scenarios of model complexity and data size. When Dask 
and SPE are combined, Dask is used for preprocessing and SPE for data analysis and ML

Table 1 Examples of Python tools and frameworks for scalable data science

Name Description Website References

bodo.ai Native Python framework that improves 
performance with automated parallelization 
and compiler optimization

https:// bodo. ai/ NA

Dask Framework that parallelizes SPE data science 
operations with a familiar API

https:// dask. org/ [22]

Fugue Unified interface for distributed computing 
running Pandas code on Spark and Dask 
without any rewrites

https:// github. com/ fugue- proje ct/ NA

Koalas Project that simplifies the use of Spark 
distributed dataframes by adopting pandas’ 
DataFrame API

https:// koalas. readt hedocs. io/ NA

Modin Library for interoperating with scalable ML 
frameworks

https:// modin. readt hedocs. io/ [99, 100]

RAPIDS Framework for simplified GPU data science https:// rapids. ai/ [60]

Ray Framework for scaling compute-intensive 
ML pipelines

https:// www. ray. io/ [101]

Scalable 
Dataframe 
Compiler

A tool for compiling pandas operations on 
dataframes to facilitate parallelization

https:// github. com/ Intel Python/ sdc [102]

Vaex Standalone tool for visualizing data and 
performing statistical calculations

https:// vaex. io/ [103]

Table 2 Summary of memory and runtime performance for the three strategies on different 
datasets

Tests were performed with and without intensive hyper-parameter optimization (exhaustive grid search). Bolded values 
represent the best-performing result for each dataset and metric pair. The data sizes shown in MB correspond to the 
uncompressed tabular files. OOM out of memory

Peak memory (MiB) Minimum runtime (s)

Framework DT DP SPE DT DP SPE

BRCA n1,205 × f60,483 (713.3 MB) 12,380 14,039 OOM 984 1623 OOM

BRCA Coding n1,205 × f19,564 (311.3 MB) 2897 5870 4489 903 1057 1183

LUAD/LUSC n911 × f19,564 (194.9 MB) 2988 5204 3628 410 456 561

SYNTH n5,000 × f20,000 (300.9 MB) 11,120 12,217 16,443 585 373 1552

BRCA Coding HPO n1,205 × f19,564 (311.3 MB) 4208 6854 10,368 1469 1478 2324

https://bodo.ai/
https://dask.org/
https://github.com/fugue-project/
https://koalas.readthedocs.io/%20
https://modin.readthedocs.io/
https://rapids.ai/
https://www.ray.io/
https://github.com/IntelPython/sdc
https://vaex.io/%20
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Discussion
Getting started with Dask is simple, but knowing when and how to properly deploy it is 
vital for obtaining the best performance. As the results show, there are some important 
prerequisites to consider before choosing to scale computation with Dask.

Dataset dimensionality and learning complexity are the two major determinants of 
the analysis setup. Regarding the size of the dataset, one of the following scenarios can 
occur: (a) data fits comfortably in memory; (b) data cannot totally fit in memory unless 
disk drives are leveraged to expand total available memory; and (c) very large datasets 
that cannot be processed in a single machine. As for learning complexity, computational 
runtimes of data fitting are proportional to the complexity of the workflow. This step can 
be expedited with parallelization.

Figure 5 shows different scenarios where SPE and Dask can be applied to surpass limi-
tations and improve performance in ML models trained on datasets of different sizes, 
with or without intensive hyper-parameter optimization. Note that these guidelines 
are not strict. For example, if the size of large datasets can be reduced to fit in memory 
through pre-training processing with Dask, it may be more efficient to switch to SPE for 
the remainder of the computations.

Dask usage guidelines for transcriptomics analysis

While integrating code with Dask requires minimal rewrites, to optimize performance 
it is important to consider the specificities of distributed computation explored in this 
paper, as well as the presented performance benchmarking results. In this section, we 
give usage guidelines based on our experience from working with transcriptomic data.

Transcriptome data is often presented as a singular tabular file. However, this format 
does not take full advantage of distributed computation. A naive approach would be 
to split data into several tabular files, enabling Dask to load and process each file as an 
independent partition to parallelize computation and reduce memory footprint. How-
ever, there are other file formats more suited for distributed computation, such as Par-
quet [91].

Parquet is a columnar file format that efficiently compresses stored data. It can easily 
store data as multiple files of fixed size that can be loaded as parallel partitions. Impor-
tantly, Parquet stores metadata information, which can greatly enhance Dask’s per-
formance. This especially true of pipelines that include one of several operations that 
require knowing the index a priori, like sorting. Furthermore, metadata stores the data 
type of each column, which would otherwise have to be determined through a computa-
tionally expensive process of per-column sampling.

Partition size plays a significant role in performance. Ideally, partitions should be 
small enough to fit into each worker’s memory, but large enough to reduce the over-
head caused by each additional partition. Ideal partition size depends on the charac-
teristics and dimensions of each dataset. In our experiments, sizes between 60 to 100 
MiB offered a good tradeoff. As several of the data analysis steps, like feature selection, 
reduce dataset size, distributing data across fewer blocks (repartition) and storing the 
result in memory (persist) can lead to more efficient task graph execution.

The choice between Dask Distributed Threads or Distributed Processes depends on 
the size of data, types of execution bottlenecks and proportion of GIL-bound code. 
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Threads should be used to work with numeric collections (e.g. Arrays and Dataframes) 
that release the GIL. On the other hand, pure Python collections (e.g. Bags) are bound to 
the GIL and thus typically show gains in performance when leveraging several processes. 
For example, the data used for building predictive models in our supervised learning 
tests was small (under 1GB), but because the workflows mostly comprised highly vector-
ized computations, multithreading had a better overall performance. For the single-cell 
preprocessing pipeline, multiprocessing exhibited the best performance. This difference 
was also observed when testing loading times only. Since the file sizes for datasets var-
ied between 1.8GB and 9.5GB, we posit that multiprocessing approaches generally out-
perform multithreading for larger data sizes and when loading times are an execution 
bottleneck.

Conclusions
Genomic technology developments have led to an exponential increase in the volume of 
data collected with multiple molecular assays. The molecular characterization of cohorts 
of hundreds of individuals (e.g. GTEx [92], TCGA [85], Geuvadis [93]), of diverse cellular 
characteristics (e.g. ENCODE [94, 95] or the Roadmap Epigenomics Project [96]), and 
thousands of single cells [88, 97] has been achieved. This has prompted breakthrough 
advances in many bioinformatics topics, including precision medicine, cancer genetics, 
population genomics, and developmental molecular biology.

ML appears as a critical tool to map the relationship between the state of molecular 
entities and phenotypic traits. The magnitude and the high-dimensionality of transcrip-
tomic data often requires considerable computational resources, in the realm of high-
performance computing, which are not always available. Thus, alternative approaches 
for scalable machine learning and data analysis are required.

Dask is highly flexible and versatile and can be used as standalone tool or to support 
other frameworks. It facilitates scalable data analysis with multi-core and out-of-core 
computation functionalities. By cloning the API of commonly used scientific Python 
libraries, Dask makes its adoption rapid and seamless. Although we have focused on so-
called shallow learning methods, Dask can also interface with Python Deep Learning 
libraries [60, 98].

Through several application examples we show that Dask can improve the perfor-
mance of transcriptomics data analysis and scale computation beyond the usual limits. 
We foresee that frameworks like Dask will become an essential part of the computational 
data scientist’s toolkit, alleviating the burden of technical implementation and allowing 
researchers to concentrate on scientific questions.

Abbreviations
CPU  Central processing unit
CV  Cross-validation
DP  Distributed processes
DT  Distributed threads
GIL  Global interpreter lock
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scRNA-seq  Single-cell RNA sequencing
SL  Supervised learning
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