
Scalable transcriptomics analysis with Dask:
applications in data science and machine
learning
Marta Moreno1,2, Ricardo Vilaça4,5 and Pedro G. Ferreira1,2,3*

Background
Tissue homeostasis results from an intricate gene regulation network that when dis-
rupted can lead to disease. Gene expression is an intermediate state linking the genome
to phenotypic outcomes. Biomedical studies have relied on the analysis of gene expres-
sion levels to disease state, progression, outcome and treatment [1–3]. Changes in gene
expression have helped identify patterns and signatures associated with disease (e.g.
community-acquired pneumonia [4] or tuberculosis [5]), improve the understand-
ing of aging conditions [6, 7] and complement genetic information in Mendelian dis-
ease diagnosis [8]. Furthermore, analyzing these alterations can facilitate the discovery,
development and assessment of novel drug treatments [9–11], the optimization of drug

Abstract

Background: Gene expression studies are an important tool in biological and bio-
medical research. The signal carried in expression profiles helps derive signatures for
the prediction, diagnosis and prognosis of different diseases. Data science and specifi-
cally machine learning have many applications in gene expression analysis. However, as
the dimensionality of genomics datasets grows, scalable solutions become necessary.

Methods: In this paper we review the main steps and bottlenecks in machine learning
pipelines, as well as the main concepts behind scalable data science including those of
concurrent and parallel programming. We discuss the benefits of the Dask framework
and how it can be integrated with the Python scientific environment to perform data
analysis in computational biology and bioinformatics.

Results: This review illustrates the role of Dask for boosting data science applications
in different case studies. Detailed documentation and code on these procedures is
made available at https:// github. com/ marta ccmor eno/ gexp- ml- dask.

Conclusion: By showing when and how Dask can be used in transcriptomics analysis,
this review will serve as an entry point to help genomic data scientists develop more
scalable data analysis procedures.

Keywords: Machine learning, Scalable data science, Gene expression, Transcriptomics,
Data analysis

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Moreno et al. BMC Bioinformatics (2022) 23:514
https://doi.org/10.1186/s12859-022-05065-3

BMC Bioinformatics

*Correspondence:
pgferreira@fc.up.pt

1 Department of Computer
Science, Faculty of Sciences,
University of Porto, Rua do
Campo Alegre, 4169-007 Porto,
Portugal
2 Laboratory of Artificial
Intelligence and Decision
Support, INESC TEC, Rua Dr.
Roberto Frias, 4200-465 Porto,
Portugal
3 Institute of Molecular
Pathology and Immunology
of the University of Porto,
Institute for Research
and Innovation in Health
(i3s), R. Alfredo Allen 208,
4200-135 Porto, Portugal
4 High-Assurance Software
Laboratory, INESC TEC, Rua Dr.
Roberto Frias, 4200-465 Porto,
Portugal
5 Department of Informatics,
Minho Advanced Computing
Center, University of Minho,
Gualtar, 4710-070 Braga, Portugal

https://github.com/martaccmoreno/gexp-ml-dask
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-05065-3&domain=pdf

Page 2 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

application and dosage in cancer therapies [12, 13], or the prediction of response to ther-
apy [3].

Advances in sequencing technologies have produced an unprecedented amount of
multi-modal molecular data. This opened the possibility for a thorough and informa-
tive interrogation of genotype-phenotype associations on complex diseases, presenting
new opportunities for precision medicine. However, finding statistically significant and
meaningful associations between molecular data and phenotypic or clinical annotations
remains a hard challenge. This difficulty is exacerbated by the high dimensionality of the
data and, as is the case with gene expression, a considerable stochastic component.

Machine Learning (ML) seeks to automatically capture statistical associations in data
while improving knowledge with additional evidence [14–16]. ML is of particular inter-
est in computational biology because it can describe biological phenomena without the
need to explicitly model them. Supervised ML builds mathematical models that map the
input data, described by several attributes or features, to the corresponding output value
or label for each instance or sample. The model can then be used to predict the outcome
of unseen or incoming data. Figure 1 shows a general flowchart of a supervised learning
(SL) pipeline: (1) train/test data split; (2) model training; (3) model evaluation. Discrete
categories are determined through classification tasks (Fig. 1a); when predicting numeri-
cal values, the task is called regression (Fig. 1b).

In the context of gene expression analysis, there are several examples of phenotype
inference from predictive models. Classification has been used for predicting therapeu-
tic or drug response [17, 18], as well as cancer molecular subtype from gene expression,
DNA methylation data, or both [19]. Use cases for regression include the prediction of
expression levels of target genes from landmark genes [20] or mutational effects from
DNA sequences [21].

While ML provides an adequate solution for statistical association challenges, it often
incurs substantial computational demands. Processing power and memory requirements
are amplified by the size of the data and the complexity of the models. When building

Fig. 1 Supervised learning for predicting cancer-related phenotypes from gene expression data. a
Classification identifies target labels, including cancer subtypes; b regression can predict progression and
outcome measures, such as disease-free intervals. After the data is partitioned into training and test sets, a ML
algorithm is fit on the training data. The model is evaluated using hold-out test data

Page 3 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

models in a single machine, such as a laptop, it might be too costly or even impossible
to load large amounts of data into memory. Moreover, while high-performance comput-
ing (HPC) solutions are capable of meeting these requirements, it is not always trivial to
fully leverage these resources. Therefore, implementations for scalable computing of ML
and other data analytics tasks are required.

There are several frameworks for scalable data analytics available for the widely-used
Python programming language. In this review we will focus on a particular framework
called Dask [22]. Dask divides data into smaller blocks on which to perform highly paral-
lel computations, thus allowing larger data sets to fit in the memory of single machines.
It tightly integrates with existing libraries for Python data analytics and shares a similar
interface for implementation, which minimizes the need for code rewrites and facilitates
the transition to HPC environments. Here we explore the potential of Dask for scalable
ML and data science, applied to bulk and single cell transcriptomics, providing usage
recommendations supported by numerous code examples and performance tests.

This paper begins with a review on the need for scalable data analysis in computational
biology. We start by describing the standard supervised ML workflow and how it can be
adapted for gene expression data analysis. In the following section, we look into the spe-
cifics of the Python programming language and how it can be used for ML and data sci-
ence, discussing its advantages and limitations. We then introduce the general concepts
of distributed and parallel computing and enumerate different scalable ML frameworks,
with a focus on Dask. We perform several benchmarks and comparisons highlighting
the advantages of Dask. Finally, we propose guidelines for the efficient use of Dask for
transcriptomics analysis. This review is supported by examples of different tasks, com-
parative performance tests, and supporting code.

Building gene expression predictive models

Gene expression predictive models are built using supervised learning, which often rely
on the data being stored in a structured format, such as tables, see Fig. 1. The labels (cat-
egorical or numerical) represent the phenotype or the clinical information to be inferred.

Supervised learning pipelines encompass several key steps [23]. First, gene expression
and phenotype data are loaded. At this point, preprocessing can be applied to prepare
the data for the remaining steps. The data is then split into training and test sets. ML
algorithms learn from the training data to generate a predictive model. In supervised
learning, training consists in finding the coefficients, known as model parameters, that
provide the best mapping between input features and output labels, as judged by inter-
mediate validation scores. Lastly, the trained model is evaluated on the hold-out test set.
The test set is used to estimate the generalization error, i.e. how well the model behaves
on unseen data. To ensure the robustness of the generalization error, k-fold cross-val-
idation (CV) [24, 25] is customarily performed during model training. This strategy
consists in creating several (k) train/test partitions from the original dataset, repeating
the model-building process k times, and averaging out k evaluation scores. If the model
reaches an evaluation score that is deemed sufficiently high for a specific application, it
can be deployed to work with new incoming data.

For the most part, the development of transcriptomics predictive models follows the
traditional approach. However, because gene expression levels obtained from RNA-seq

Page 4 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

experiments are noisy and have a large amplitude, data preprocessing may have an
impact on downstream results. Therefore, feature selection, scaling and normalization
are required [26–32]. Feature selection removes less informative genes, for example
those with low variability or low expression levels. It can also select biologically-relevant
gene subsets (e.g. protein coding). Scaling is used to attenuate fold differences in expres-
sion ranges, typically by shifting the data from a linear to a logarithmic scale. Sample
normalization methods account for differences that arise from the sequencing process,
like library size, batch effects and gene structure.

Although models are trained automatically, the building process can be controlled
by static values defined a priori by the user, known as hyper-parameters [33]. Different
hyper-parameter values influence the performance of the final predictive model in dif-
ferent ways. Therefore, hyper-parameter optimization (HPO) can be performed during
CV in an attempt to lower the generalization error. If the model reaches an optimized
performance according to the evaluation measures, the model is selected and applied to
new incoming data. Determining the best set of hyper-parameter values is a computa-
tionally expensive combinatorial problem. It requires traversing a multidimensional grid
of values, with a model to be trained and tested for each combination. Random search
alleviates this issue by sampling a limited number of hyper-parameter combinations [34].

To accurately estimate the performance of an ML algorithm, k-fold CV and HPO can
be combined into a strategy known as nested CV. While this provides exhaustive per-
formance estimates, it further exacerbates the computational cost incurred by the two
techniques in isolation.

Scientific computing with Python

Python is an interpreted, high-level and general-purpose programming language with
a focus on readability [35]. It offers interactive and scripting modes that allow for quick
prototyping and deployment of a broad range of scientific applications. Data science and
ML are areas where Python’s role has greatly expanded in recent years. The Scientific
Python Environment (SPE) is at the core of this expansion. The SPE is based on sev-
eral highly efficient libraries that support numerical and scientific computation, namely:
NumPy [36], for storing and operating over large and multi-dimensional arrays and
matrices; Scipy [37] for fundamental routines and algorithms in scientific and technical
computation; pandas [38] for data manipulation and analysis; matplotlib [39] for plot-
ting and visualization; and scikit-learn [40] for traditional ML. Python and the SPE have
thus become popular tools for data science and ML [23]. However, as the size of the data
increases and the tasks become more complex and expensive there is a need for improv-
ing program efficiency, namely in terms of execution runtime.

Python concurrent and parallel computation

Parallelism and concurrency are two approaches for improving the efficiency of a pro-
gram. Their use is highly dependent on the underlying architecture of the central pro-
cessing unit (CPU). In Python, they can be implemented through native packages such
as multiprocessing and multithreading.

A process is an independent instance executed in a processor core or node with dedi-
cated memory space. To speed up computation in CPU-intensive tasks, multiprocessing

Page 5 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

spawns multiple processes that execute parts of a task in parallel. A thread is run within
a process and allows parts of a program to run concurrently when there is a separate
flow of execution. Multiple threads can be run in the same process, sharing the same
memory space. This reduces the overhead associated with copying and moving data, and
making code faster and safer to execute. Multithreading allows concurrency by progress-
ing multiple independent tasks simultaneously.

When multiple threads are launched at the same time, problems may arise if computa-
tions are performed out of order. Standard Python implementations address this issue by
enforcing the global interpreter lock (GIL) mechanism. The GIL ensures that only a sin-
gle thread is run at a time. To overcome this important limitation, it is necessary to find
solutions for carrying out computations outside the GIL, either by rewriting code in a
different language like C or using specialized libraries. In particular, SPE libraries imple-
ment several strategies for speeding up computation. For example, NumPy and SciPy can
efficiently perform numerical linear algebra operations and bypass the GIL mechanism
by leveraging a low-level Basic Linear Algebra Subprograms implementation known as
OpenBLAS [41, 42]. SPE libraries also come with the native capability to spawn multiple
processes, or jobs, to parallelize computation across several CPU cores. Yet, increasing
the number of processes does not always speedup computation. In some cases, excessive
parallelization can even be detrimental to overall performance. Therefore, understand-
ing how multiprocessing processes might nest or interact with each other is critical for
improving program performance.

Limitations of the scientific Python ecosystem

For all their promise, the advantages of parallelism can be difficult to achieve. To bypass
the GIL, multiprocessing has to launch a Python instance containing a full, in-memory
copy of the data for each additional CPU core in use. Furthermore, certain ML tasks
such as nested CV or hyper-parameter optimization incur heavy computational bur-
dens. Hence, the parallelization of ML pipelines rapidly fills available memory. Fur-
thermore, increases in data size lead to difficulties in data processing and analysis. The
limitations of a single machine become apparent when datasets no longer fit comfort-
ably in memory or take too long to load and process. One approach to alleviate these
issues would be to share the workload across several machines, but in Python this is not
a straightforward task. Data science libraries like pandas or scikit-learn are not designed
specifically to operate on distributed systems [43]. It is thus imperative to find compu-
tational paradigms that can handle multiple ML models simultaneously built from large
or massive datasets and take full advantage of all available CPU cores through efficient
parallelization, while offering the possibility to scale beyond a single machine.

Scalable data science

The transformative power of data science is supported by advances in computing capa-
bilities that enable the production, collection, storage and processing of increasingly
larger amounts of data. Thus, the computational requirements of large datasets are an
important bottleneck in data analysis. This bottleneck can be overcome by improving
the quality and/or quantity of computational resources available to a single machine
(scaling-up), or spreading computational load across several machines (scaling-out).

Page 6 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

Scalable data analytics frameworks can assist in implementing these strategies, ensur-
ing that available resources are fully and expanding computational capabilities in tasks
such as ML. For example, when a dataset does not entirely fit in memory, out-of-core
computation can be a solution. Out-of-core algorithms are optimized to efficiently fetch
and transfer batches of data from disk to memory and to process them in smaller blocks,
expanding total available memory.

For several years, the Apache Spark [44, 45] framework has been a popular choice for
scalable data analytics. Spark is a unified engine written in Scala for distributed data pro-
cessing. As a part of the all-in-one Apache ecosystem, Spark interfaces well with other
Apache projects and is capable of integrating and parallelizing computation across sev-
eral languages, namely Java, R, and Python (via the Pyspark library). However, integra-
tion with these languages requires additional programming efforts and often incurs
serialization costs, as abstract data structures need to be converted between languages.

As such, several frameworks and tools are currently being developed under the Python
ecosystem to scale one or several steps of data analysis across several CPUs (and, in
some cases, GPUs) while minimizing the need for code rewrites (Table 1). Some frame-
works focus on out-of-core parallelization of large tabular datasets, while others provide
support for a complete analysis pipeline in a distributed environment. Overall, there is
an ongoing effort to develop scalable data science frameworks that provide seamless
integration and compatibility with existing SPE code. These frameworks aim to alleviate
the burden associated with technical implementation, allowing researchers to focus on
scientific questions.

From among the solutions for scalable data science in Python, this paper highlights the
Dask framework [22].

Scaling computational biology with Dask

Dask has been applied to a variety of scalable problems in computational biology. It has
been used to introduce parallel computation in molecular dynamics analysis and simu-
lations [46–49], efficiently handle genotype data as arrays [50], assess the reliability of
methodologies for the analysis of human brain white matter connections [51], as a com-
ponent in general neuroimagining pipelines [52], and for powering a workflow in gene
regulatory network model exploration [53].

Applications of Dask specific to omics data analysis include scaling the reconstruc-
tion of gene regulatory networks from single-cell yeast RNA [54], integrative analysis
of multi-omics data [55], inferring gene regulatory networks from large single-cell gene
expression datasets [56, 57], analysis of high resolution rRNA sequencing data from
multiple amplicons [58], and the study of tissue organization and cellular communica-
tions derived from spatial omics data analysis and visualization [59].

Furthermore, Dask plays a supporting role as an underlying component for several
data science and machine learning tools used in computational biology. For example,
the GPU-accelerated tool RAPIDS [60] builds on top of the Dask framework in order to
scale its data preparation and model training steps across multiple GPUs and machines
[23]. In this assisting capacity, Dask has made it possible to scale single-cell analysis
pipelines to upwards of millions of cells [61]. In large-scale distributed environments, i.e.

Page 7 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

supercomputers, Dask has been deployed as a workflow manager for GPU-accelerated
computation to predict protein structures from genomic sequences [62].

The Dask framework

Dask [22] is a native Python framework that extends the SPE’s capabilities for multi-core
and out-of-core computation. This allows Dask to scale beyond a single machine and fit
increasingly large datasets into memory. By cloning the APIs of commonly used libraries
like NumPy, pandas or scikit-learn, Dask minimizes the changes required to port pre-
existing code [36]. The simplicity of Dask greatly reduces the barrier to entry for ana-
lysts that are new to distributed and parallel computing. This is especially important in
domains such as computational biology and bioinformatics where data analysis pipelines
are often developed by scientists without a formal computer science background using
the SPE in local workstations.

The Dask framework combines blocked algorithms with task scheduling to achieve
parallel and out-of-core computation. The framework is composed of collections, task
graphs and schedulers. Collections are data structures that represent and organize the
data. Task graphs and schedulers determine how computations are performed (Fig. 2).

Dask implements three collection types specialized in building task graphs for struc-
tured and unstructured data: Dask Arrays, Dask Dataframes and Dask Bags. Dask
Dataframes are limited to two-dimensional tables, while Dask Arrays can have higher
dimensionality. Dask Dataframes split the dataset into multiple partitions along the
index. Each partition consists of a pandas Dataframe that can be processed indepen-
dently, parallelizing the workload. Dask Arrays creates chunks by splitting NumPy
arrays along the index and columns. Bags are a more flexible data type that can hold any
combination of Python objects. They are particularly useful for working with unstruc-
tured data in tasks such as graph or text mining. Because it mimicks the interface of
the pandas and NumPy libraries, Dask offers many of the same statistical and analytical
functionalities.

In addition, Dask provides the more general Delayed and Futures interfaces that oper-
ate as building blocks for implementing custom data structures and algorithms in Dask.
Like the aforementioned specialized collections, Dask Delayed executes task graphs
lazily as needed, while Future executes functions eagerly and concurrently across multi-
ple cores and machines.

Fig. 2 Main components of the Dask framework. Collections are processed by task graphs, which are
executed by schedulers. In a task graph the nodes represent functions (f) and edges are Python objects (o)

Page 8 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

To efficiently handle collections, Dask builds task graphs with blocked algorithms.
Blocked algorithms are an approach to out-of-core, distributed computation. Blocked
algorithms split data into smaller blocks that are loaded on demand and processed in
parallel [63].

A task graph is a directed acyclic graph used to keep track of all tasks and their order.
Each node is a function and the edges are objects generated by the preceding function
node and used as input by the succeeding node (Fig. 2). Graph evaluation is performed
lazily, meaning that task processing is delayed until computation is explicitly called. Due
to the great flexibility of blocked algorithms, task graphs can interface with several prob-
lem assignment algorithms, such as task scheduling [64].

Task scheduling allows Dask to achieve parallelization by dividing the program into
smaller tasks. For instance, when summing three partitions with three numbers each,
the scheduler will assign one worker to each partition and process them in parallel. Once
this done, the resulting smaller sums are aggregated into a final solution, Fig. 2.

In Dask, there are two groups of task schedulers: single-machine and distributed. Sin-
gle-machine schedulers leverage local processes or threads, while distributed schedul-
ers operate both locally and across multiple machines. While single-machine schedulers
do not require setup and incur in a smaller overhead, distributed schedulers are more
sophisticated and offer more features such as a diagnostics dashboard for monitoring
performance.

Single-machine schedulers include the threaded scheduler, multiprocessing sched-
uler and single-threaded synchronous scheduler. The single-threaded scheduler has no
parallelism, performing all computations in a single thread, which facilitates debugging.
The threaded scheduler leverages a single machine’s entire thread pool, which allows
for faster computation times for code that releases the GIL. Lastly, the multiprocess-
ing scheduler provides parallelism by assigning tasks to local processes. This is useful
for bypassing the GIL when it cannot be released, as is often the case with pure Python
code. However, because inter-process communication is slower than threaded execu-
tion, the multiprocessing scheduler does not always reduce execution times.

While single-machine schedulers ship threads or processes to local thread or pro-
cess pools directly, distributed schedulers launch and interface with computations
through clients that assign tasks to workers. In Dask, one worker corresponds to one
process, with access to a worker-specific subset of the thread pool. One of the workers is
appointed as the master which will coordinate other workers and direct them to execute
the individual tasks found in graphs. As tasks are completed, workers become free and
are assigned to any remaining tasks until all tasks are executed.

The primary purpose of distributed schedulers is to parallelize computation in clus-
ters. However, clients for interfacing with distributed schedulers can also be initialized
locally. This might be desirable for a number of reasons. As previously mentioned, dis-
tributed schedulers grants users with access to a diagnostics dashboard which allows
them to assess computational performance. Furthermore, distributed schedulers offer
improved data locality. Data locality consists in the process of moving computations
closer to where data is stored, which is often more efficient than the reverse operation.
In such cases, the additional overheard caused by setting up a distributed scheduler
locally may prove worthwhile. Lastly, the distributed scheduler can leverage additional

Page 9 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

worker resources, such as additional memory for the local processing of large datasets or
extra CPUs for CPU-intensive computations.

Methods
The source code for processing the data and performing all analyses can be found at:
https:// github. com/ marta ccmor eno/ gexp- ml- dask.

Assessing phenotype predictive model performance

Using an XGBoost-powered classifier [20] with default hyper-parameters, we compared
the performance of the three strategies (Distributed Threads, Distributed Processes and
SPE) in a single machine environment for several phenotype prediction tasks.

In all cases, expression matrices comprise n sample rows characterized by f gene fea-
ture columns; label vectors have length n. Because all preprocessing steps used Dask, we
took advantage of the increase in parallelization whenever possible.

After transcriptome profiling, the BRCA gene expression datasets underwent FPKM
normalization. The dataset has 1,205 samples with BRCA molecular subtype informa-
tion available, profiled across 60,483 genes. Following feature selection of coding genes
we obtained a second, smaller feature matrix, in which the number of genes was reduced
to 19,564.

The LUAD/LUSC gene expression matrix contained 776 samples and 19,560 genes.
These dimensions resulted from filtering for samples of individuals with information
on the number of cigarettes smoked per day. Only coding gene features were selected.
Gene expression quantification files for this dataset underwent FPKM and UpperQuar-
tile normalizations.

Synthetic read counts for the SYNTH dataset were generated using compcodeR [65],
an R package that generates simulated count data. Tweaks in the simulated data distribu-
tion were used to mimic different classes. Simulated counts and their respective classes
were later subsampled and shuffled with a Python script. The resulting SYNTH dataset
has 5,000 samples and 20,000 genes.

Generating datasets with different dimensionalities

For dataset subsampling two approaches were applied: (i) sample-wise subsampling, in
which the top 20,000 genes with higher variance were selected as features, and a vary-
ing number of samples n (200, 600, and 1,205) was randomly sampled; (ii) feature-wise
subsampling, in which the number of samples was fixed as 1,205 (the total), and varying
the number of features f was select from among those with the highest variance (1,000,
20,000 and 40,000).

Cross‑validation

As of the time of writing, Dask has no official CV support; the proposed solution is
to parallelize computation using joblib. However, this only scales CPU usage and does
not help with scaling memory. This means that while runtime will be reduced, memory
usage will peak similarly as in SPE. We have developed our own custom CV script to
use with Dask in tasks involving gene expression data, which can be found in the follow-
ing repository: https:// github. com/ marta ccmor eno/ gexp- ml- dask. This implementation

https://github.com/martaccmoreno/gexp-ml-dask
https://github.com/martaccmoreno/gexp-ml-dask

Page 10 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

leverages Dask’s out-of-core capabilities for adding disk drive memory to total available
memory.

Hyper‑parameter optimization

The performance of Dask and SPE in intensive optimization tasks was evaluated by per-
forming an exhaustive grid search on the coding subset of the BRCA dataset (n1,205
× f19,564). To that end, a grid containing two values for each of three XGBoost hyper-
parameters was transversed as many times as the total number of combinations (2 × 2 ×
2 = 8). Training set performance was evaluated using 5 × 2 nested CV.

Single‑cell RNA‑seq preprocessing

To assess how Dask performs and compares against SPE in handling scRNA-seq data,
the following tasks were performed:

1. Log-normalization of the data (log-norm);
2. Identification and selection of highly variable gene features (feature selection);
3. Data scaling to shift the distribution to a mean of 0 and standard deviation of 1.

This pipeline was applied in a single machine environment using two frameworks, Dask
and SPE, on single-cell transcriptomes sampled from esophagus tissue. The dataset com-
prised 87,947 samples and 24,245 genes. Smaller dataframes were derived by randomly
choosing samples and features without replacement.

Results
To highlight the relevance of the use of scalable data analysis frameworks, we bench-
mark and compare the performance of the Dask and SPE frameworks in two scenar-
ios: (i) an end-to-end ML pipeline for phenotype prediction from cancer and synthetic
bulk transcriptomic data, with and without hyper-parameter optimization; (ii) in the
preprocessing single-cell RNA-seq data. All tests were performed on a laptop running
Linux Ubuntu 20.04.2 LTS with a 500 GB SSD, 16 GB of RAM and a multi-core proces-
sor powered by four cores comprising two threads each, with core frequency of up to 4.6
GHz. or the Dask framework, we have opted to use the Distributed scheduler due to the
advantages presented in the previous section. Dask Distributed is deployed using two
configurations: (i) Distributed Threads (DT), which spawns a single worker with access
to all eight CPU threads in the thread pool; and (ii) Distributed Processes (DP), which
spawns four workers, each with access to two threads.

Inferring phenotypes from cancer transcriptomic data

Cancer is a complex and heterogeneous disease driven by genetic alterations which often
result in gene expression dysregulation [66, 67]. RNA profiling [26, 68] of tumoral tis-
sues is widely used to uncover cancer gene signatures. Accurate diagnosis is essential
to achieve the best clinical outcome [69]. Predictive models of cancer molecular sub-
types have been developed from transcriptomic data [70–74], which can assist clinicians
deliver specific tumor tailored treatments [75–79], as well as provide further cancer
subtype stratification [80–82]. Prognostic signatures for assessing patient disease-free

Page 11 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

survival have been derived with ML from whole-transcriptome data in several tissues
[81, 83, 84].

Supervised learning tasks

Transcriptome data from the Cancer Genome Atlas (TCGA) [85] was used to show how
phenotypes can be predicted from tumor-specific gene expression levels. Classification
and regression models were built with SPE and Dask (Distributed Threads and Distrib-
uted Processes) in various ways. The performance of the three approaches is compared
in terms of minimum run time, peak memory usage and accuracy for different predictive
tasks:

1 Classification of five breast cancer molecular subtypes from breast gene expression
data sequenced by TCGA (BRCA);

2 Prediction of the number of cigarettes smoked per day in individuals diagnosed with
lung cancer based on lung gene expression data from TCGA (LUAD/LUSC);

3 Binary classification of synthetic samples from read counts generated in silico using
different distributions to mimic two distinct classes (SYNTH).

The minimum runtime and peak memory usage values for the three supervised learning
tasks are shown in Table 2. Minimum runtime is the shortest execution runtime taken
from three repetitions. This metric was chosen since fluctuations in runtime are usually
caused by external factors, e.g. other processes running in the background, meaning that
the smallest value approximates the true execution time for the code under evaluation.
Memory usage reports the highest value recorded during execution.

For the full BRCA dataset, the DT configuration offered gains of at least 11.82% for
peak memory usage and 39.4% in runtime compared to DP and SPE. Likewise, DT out-
performed the other two methods for the coding subset of the BRCA datset with gains
of at least 35.5% and 14.6% for peak memory usage and minimum runtime, as well as the
LUAD/LUSC dataset with a minimum improvement in performance of 17.6% and 10.1%
for those same metrics. The results for the SYNTH dataset presented a trade off: while
DT offered gains of 9.0% for peak memory consumption, DP had a minimum runtime
that was 36.2% lower.

Dataset dimensionality

In addition to comparing performance for three datasets, we sought to test and com-
pare the performance of the different strategies when applied to datasets with varying
dimensionality, as they may be distinctively affected by a growing number of features
(columns) or samples (rows). With subsampling we derived datasets of multiple sizes
from the full BRCA dataset, see Fig. 3.

Overall, DT outperformed both DP and SPE in all cases, with the lowest peak memory
usage and minimum runtime irrespective of dimensionality.

Intensive optimization tasks

Hyper-parameter optimization (HPO) performance was assessed for the three strategies
using the coding subset of the BRCA dataset, see Table 2. DT outperformed the other

Page 12 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

methods for peak memory usage, with gains of at least 38.6%. Minimum runtime was
similar for both Dask configurations, with gains of roughly 36% compared to SPE. All
strategies exhibited similarly high levels of accuracy.

Single‑cell data analysis

Single-cell RNA sequencing (scRNA-seq) is enabling the study of gene expression at an
unprecedented resolution to characterize complex tissues and disease [86]. The constant
development of single-cell technologies resulted in an exponential growth in terms of
cell profiled [87].

scRNA-seq computational analysis workflows follow a series of well-established steps
[88]. Given the count matrices obtained by raw sequencing data alignment, the data is
preprocessed before passing through downstream analysis [89]. Given the large amounts
of data generated, scalable methods are essential for working with scRNA-seq data.

Here, we show how Dask can scale several tasks (log-scale transformation, feature
selection and scaling) commonly performed in the preprocessing of scRNA-seq data.
Benchmarks are performed on a dataset sampled from esophagus tissue used to meas-
ure ischaemic sensitivity of human tissue at different time points [90]. The performance
of DT and DP are compared with SPE relative to the minimum process runtime for dif-
ferent dimensionalities sampled from the complete dataset, see Fig. 4a.

In this scenario, for the lower dimensionality datasets, SPE outperforms both Dask
Distributed configurations. However, for larger dimensiontionalities, both configu-
rations surpass SPE and are, in fact, the only viable solution as SPE runs out of mem-
ory. Remarkably, the multiprocessing DP approach outperformed DT in all cases.

Fig. 3 Performance comparison of the three strategies for the subsampled BRCA datasets. Peak memory,
minimum runtime and classification accuracy were measured. Differences in accuracy resulted from the
algorithmic implementation specificities of Dask and SPE. The data sizes shown in MB correspond to
uncompressed tabular files

Page 13 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

To investigate this difference, we looked into the bottleneck for this simple pipeline:
loading times (Fig. 4b).

Given that loading entire datasets into memory was not possible for higher
dimensionalities, we tested DT and DP loading times on a subset of the available
dimensionalities. As expected, loading comprises a considerable portion of runtime
compared to the full pipeline (around 50%). DP always outperformed DT, meaning
that even for the smallest dataset (n40k × f10k, with file size 1.8 GB), multiprocess-
ing approaches greatly benefited loading times.

Fig. 4 Runtime comparison between the Dask and SPE frameworks in A the preprocessing and B the full
loading of scRNA-seq data. Datasets were subsampled for different dimensions. In A, both Dask Distributed
configurations (Threads and Processes) partially load the data, processing dataset partitions; in B, the entire
dataset is loaded. Asterisks represent instances when programs ran out of memory. n is the number of rows
and f the number of features. The file sizes shown in GB correspond to uncompressed tabular files

Page 14 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

Fig. 5 Proposed usage of SPE and Dask for different scenarios of model complexity and data size. When Dask
and SPE are combined, Dask is used for preprocessing and SPE for data analysis and ML

Table 1 Examples of Python tools and frameworks for scalable data science

Name Description Website References

bodo.ai Native Python framework that improves
performance with automated parallelization
and compiler optimization

https:// bodo. ai/ NA

Dask Framework that parallelizes SPE data science
operations with a familiar API

https:// dask. org/ [22]

Fugue Unified interface for distributed computing
running Pandas code on Spark and Dask
without any rewrites

https:// github. com/ fugue- proje ct/ NA

Koalas Project that simplifies the use of Spark
distributed dataframes by adopting pandas’
DataFrame API

https:// koalas. readt hedocs. io/ NA

Modin Library for interoperating with scalable ML
frameworks

https:// modin. readt hedocs. io/ [99, 100]

RAPIDS Framework for simplified GPU data science https:// rapids. ai/ [60]

Ray Framework for scaling compute-intensive
ML pipelines

https:// www. ray. io/ [101]

Scalable
Dataframe
Compiler

A tool for compiling pandas operations on
dataframes to facilitate parallelization

https:// github. com/ Intel Python/ sdc [102]

Vaex Standalone tool for visualizing data and
performing statistical calculations

https:// vaex. io/ [103]

Table 2 Summary of memory and runtime performance for the three strategies on different
datasets

Tests were performed with and without intensive hyper-parameter optimization (exhaustive grid search). Bolded values
represent the best-performing result for each dataset and metric pair. The data sizes shown in MB correspond to the
uncompressed tabular files. OOM out of memory

Peak memory (MiB) Minimum runtime (s)

Framework DT DP SPE DT DP SPE

BRCA n1,205 × f60,483 (713.3 MB) 12,380 14,039 OOM 984 1623 OOM

BRCA Coding n1,205 × f19,564 (311.3 MB) 2897 5870 4489 903 1057 1183

LUAD/LUSC n911 × f19,564 (194.9 MB) 2988 5204 3628 410 456 561

SYNTH n5,000 × f20,000 (300.9 MB) 11,120 12,217 16,443 585 373 1552

BRCA Coding HPO n1,205 × f19,564 (311.3 MB) 4208 6854 10,368 1469 1478 2324

https://bodo.ai/
https://dask.org/
https://github.com/fugue-project/
https://koalas.readthedocs.io/%20
https://modin.readthedocs.io/
https://rapids.ai/
https://www.ray.io/
https://github.com/IntelPython/sdc
https://vaex.io/%20

Page 15 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

Discussion
Getting started with Dask is simple, but knowing when and how to properly deploy it is
vital for obtaining the best performance. As the results show, there are some important
prerequisites to consider before choosing to scale computation with Dask.

Dataset dimensionality and learning complexity are the two major determinants of
the analysis setup. Regarding the size of the dataset, one of the following scenarios can
occur: (a) data fits comfortably in memory; (b) data cannot totally fit in memory unless
disk drives are leveraged to expand total available memory; and (c) very large datasets
that cannot be processed in a single machine. As for learning complexity, computational
runtimes of data fitting are proportional to the complexity of the workflow. This step can
be expedited with parallelization.

Figure 5 shows different scenarios where SPE and Dask can be applied to surpass limi-
tations and improve performance in ML models trained on datasets of different sizes,
with or without intensive hyper-parameter optimization. Note that these guidelines
are not strict. For example, if the size of large datasets can be reduced to fit in memory
through pre-training processing with Dask, it may be more efficient to switch to SPE for
the remainder of the computations.

Dask usage guidelines for transcriptomics analysis

While integrating code with Dask requires minimal rewrites, to optimize performance
it is important to consider the specificities of distributed computation explored in this
paper, as well as the presented performance benchmarking results. In this section, we
give usage guidelines based on our experience from working with transcriptomic data.

Transcriptome data is often presented as a singular tabular file. However, this format
does not take full advantage of distributed computation. A naive approach would be
to split data into several tabular files, enabling Dask to load and process each file as an
independent partition to parallelize computation and reduce memory footprint. How-
ever, there are other file formats more suited for distributed computation, such as Par-
quet [91].

Parquet is a columnar file format that efficiently compresses stored data. It can easily
store data as multiple files of fixed size that can be loaded as parallel partitions. Impor-
tantly, Parquet stores metadata information, which can greatly enhance Dask’s per-
formance. This especially true of pipelines that include one of several operations that
require knowing the index a priori, like sorting. Furthermore, metadata stores the data
type of each column, which would otherwise have to be determined through a computa-
tionally expensive process of per-column sampling.

Partition size plays a significant role in performance. Ideally, partitions should be
small enough to fit into each worker’s memory, but large enough to reduce the over-
head caused by each additional partition. Ideal partition size depends on the charac-
teristics and dimensions of each dataset. In our experiments, sizes between 60 to 100
MiB offered a good tradeoff. As several of the data analysis steps, like feature selection,
reduce dataset size, distributing data across fewer blocks (repartition) and storing the
result in memory (persist) can lead to more efficient task graph execution.

The choice between Dask Distributed Threads or Distributed Processes depends on
the size of data, types of execution bottlenecks and proportion of GIL-bound code.

Page 16 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

Threads should be used to work with numeric collections (e.g. Arrays and Dataframes)
that release the GIL. On the other hand, pure Python collections (e.g. Bags) are bound to
the GIL and thus typically show gains in performance when leveraging several processes.
For example, the data used for building predictive models in our supervised learning
tests was small (under 1GB), but because the workflows mostly comprised highly vector-
ized computations, multithreading had a better overall performance. For the single-cell
preprocessing pipeline, multiprocessing exhibited the best performance. This difference
was also observed when testing loading times only. Since the file sizes for datasets var-
ied between 1.8GB and 9.5GB, we posit that multiprocessing approaches generally out-
perform multithreading for larger data sizes and when loading times are an execution
bottleneck.

Conclusions
Genomic technology developments have led to an exponential increase in the volume of
data collected with multiple molecular assays. The molecular characterization of cohorts
of hundreds of individuals (e.g. GTEx [92], TCGA [85], Geuvadis [93]), of diverse cellular
characteristics (e.g. ENCODE [94, 95] or the Roadmap Epigenomics Project [96]), and
thousands of single cells [88, 97] has been achieved. This has prompted breakthrough
advances in many bioinformatics topics, including precision medicine, cancer genetics,
population genomics, and developmental molecular biology.

ML appears as a critical tool to map the relationship between the state of molecular
entities and phenotypic traits. The magnitude and the high-dimensionality of transcrip-
tomic data often requires considerable computational resources, in the realm of high-
performance computing, which are not always available. Thus, alternative approaches
for scalable machine learning and data analysis are required.

Dask is highly flexible and versatile and can be used as standalone tool or to support
other frameworks. It facilitates scalable data analysis with multi-core and out-of-core
computation functionalities. By cloning the API of commonly used scientific Python
libraries, Dask makes its adoption rapid and seamless. Although we have focused on so-
called shallow learning methods, Dask can also interface with Python Deep Learning
libraries [60, 98].

Through several application examples we show that Dask can improve the perfor-
mance of transcriptomics data analysis and scale computation beyond the usual limits.
We foresee that frameworks like Dask will become an essential part of the computational
data scientist’s toolkit, alleviating the burden of technical implementation and allowing
researchers to concentrate on scientific questions.

Abbreviations
CPU Central processing unit
CV Cross-validation
DP Distributed processes
DT Distributed threads
GIL Global interpreter lock
HPC High-performance computing
HPO Hyper-parameter optimization
ML Machine learning
SPE Scientific Python environment
scRNA-seq Single-cell RNA sequencing
SL Supervised learning

Page 17 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

TCGA The Cancer Genome Atlas

Acknowledgements
The authors thank all the Sysadmins at MACC HPC center for their assistance. The authors acknowledge Minho Advanced
Computing Center for providing HPC resources that have contributed to the research results reported within this paper.

Author contributions
PGF and MM designed the study. MM developed the code with initial contributions from PGF. RV assisted with
state-of-the-art revision. MM and PGF wrote and revised the manuscript. All authors have read and approved the final
manuscript.

Funding
This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia, within project LA/P/0063/2020, the Portuguese National Network for Advanced Computing to PGF for the
Grant CPCA/A2/2640/2020, and the Portuguese Foundation for Science and Technology to MM for the Ph.D. scholarship
(reference SFRH/BD/145707/2019). No funding body played any role in the design of the study and collection, analysis,
and interpretation of data and in writing the manuscript.

Availability of data and materials
All source code used to generate the results used in this paper, including steps on how to obtain the data from public
repositories, can be found at: https:// github. com/ marta ccmor eno/ gexp- ml- dask.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
PGF is a partner of company Bioinf2Bio. The authors declare that they have no competing interests.

Received: 13 July 2022 Accepted: 16 November 2022

References
 1. Byron SA, Keuren-Jensen KRV, Engelthaler DM, et al. Translating RNA sequencing into clinical diagnostics: opportu-

nities and challenges. Nat Rev Genet. 2016;17(5):257–71. https:// doi. org/ 10. 1038/ nrg. 2016. 10.
 2. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. Transcriptome profiling in human diseases: new

advances and perspectives. Int J Mol Sci. 2017;18(8):1652. https:// doi. org/ 10. 3390/ ijms1 80816 52.
 3. Sammut S-J, Crispin-Ortuzar M, Chin S-F, Provenzano E, Bardwell HA, Ma W, Cope W, Dariush A, Dawson S-J, Abra-

ham JE, et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature. 2021;601:1–10.
 4. Scicluna BP, Klouwenberg PMCK, van Vught LA, et al. A molecular biomarker to diagnose community-acquired

pneumonia on intensive care unit admission. Am J Respir Crit Care Med. 2015;192(7):826–35. https:// doi. org/ 10.
1164/ rccm. 201502- 0355oc.

 5. Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multico-
hort analysis. Lancet Respir Med. 2016;4(3):213–24. https:// doi. org/ 10. 1016/ s2213- 2600(16) 00048-5.

 6. Glass D, Viñuela A, Davies MN, et al. Gene expression changes with age in skin, adipose tissue, blood and brain.
Genome Biol. 2013;14(7):1–12. https:// doi. org/ 10. 1186/ gb- 2013- 14-7- r75.

 7. Fleischer JG, Schulte R, Tsai HH, et al. Predicting age from the transcriptome of human dermal fibroblasts. Genome
Biol. 2018;19(1):1–8. https:// doi. org/ 10. 1186/ s13059- 018- 1599-6.

 8. Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcrip-
tome sequencing. Sci Transl Med. 2017;9(386):5209. https:// doi. org/ 10. 1126/ scitr anslm ed. aal52 09.

 9. Vamathevan J, Clark D, Czodrowski P, et al. Applications of machine learning in drug discovery and development.
Nat Rev Drug Discov. 2019;18(6):463–77. https:// doi. org/ 10. 1038/ s41573- 019- 0024-5.

 10. Cliff JM, Lee J-S, Constantinou N, et al. Distinct phases of blood gene expression pattern through tuberculosis
treatment reflect modulation of the humoral immune response. J Infect Dis. 2013;207(1):18–29. https:// doi. org/ 10.
1093/ infdis/ jis499.

 11. Murray PG, Stevens A, Leonibus CD, et al. Transcriptomics and machine learning predict diagnosis and severity of
growth hormone deficiency. JCI Insight. 2018. https:// doi. org/ 10. 1172/ jci. insig ht. 93247.

 12. Huang C, Mezencev R, McDonald JF, et al. Open source machine-learning algorithms for the prediction of optimal
cancer drug therapies. PLoS ONE. 2017;12(10):0186906. https:// doi. org/ 10. 1371/ journ al. pone. 01869 06.

 13. Sakellaropoulos T, Vougas K, Narang S, et al. A deep learning framework for predicting response to therapy in
cancer. Cell Rep. 2019;29(11):3367–73. https:// doi. org/ 10. 1016/j. celrep. 2019. 11. 017.

 14. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30. https:// doi. org/ 10. 1161/ circu latio naha.
115. 001593.

 15. Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet.
2015;16(6):321–32. https:// doi. org/ 10. 1038/ nrg39 20.

https://github.com/martaccmoreno/gexp-ml-dask
https://doi.org/10.1038/nrg.2016.10
https://doi.org/10.3390/ijms18081652
https://doi.org/10.1164/rccm.201502-0355oc
https://doi.org/10.1164/rccm.201502-0355oc
https://doi.org/10.1016/s2213-2600(16)00048-5
https://doi.org/10.1186/gb-2013-14-7-r75
https://doi.org/10.1186/s13059-018-1599-6
https://doi.org/10.1126/scitranslmed.aal5209
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1093/infdis/jis499
https://doi.org/10.1093/infdis/jis499
https://doi.org/10.1172/jci.insight.93247
https://doi.org/10.1371/journal.pone.0186906
https://doi.org/10.1016/j.celrep.2019.11.017
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1038/nrg3920

Page 18 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

 16. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60.
https:// doi. org/ 10. 1126/ scien ce. aaa84 15.

 17. Kang T, Ding W, Zhang L, et al. A biological network-based regularized artificial neural network model for robust
phenotype prediction from gene expression data. BMC Bioinform. 2017;18(1):1–11. https:// doi. org/ 10. 1186/
s12859- 017- 1984-2.

 18. Aliper A, Plis S, Artemov A, et al. Deep learning applications for predicting pharmacological properties of drugs
and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–30. https:// doi. org/ 10. 1021/ acs.
molph armac eut. 6b002 48.

 19. List M, Hauschild A-C, Tan Q, et al. Classification of breast cancer subtypes by combining gene expression and
DNA methylation data. J Integr Bioinform. 2014;11(2):1–14. https:// doi. org/ 10. 1515/ jib- 2014- 236.

 20. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In: Krishnapuram B, Shah M (editors) Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, San Francisco,
California; 2016. p. 785–94. https:// doi. org/ 10. 1145/ 29396 72. 29397 85. arXiv: 1603. 02754.

 21. Zhou J, Theesfeld CL, Yao K, et al. Deep learning sequence-based ab initio prediction of variant effects on expres-
sion and disease risk. Nat Genet. 2018;50(8):1171–9. https:// doi. org/ 10. 1038/ s41588- 018- 0160-6.

 22. Rocklin M. Dask: parallel computation with blocked algorithms and task scheduling. In: Proceedings of the 14th
Python in science conference, vol 130. SciPy, Austin, Texas; 2015. p. 136. https:// doi. org/ 10. 25080/ majora- 7b98e
3ed- 013.

 23. Raschka S, Patterson J, Nolet C. Machine learning in Python: main developments and technology trends in data
science, machine learning, and artificial intelligence. Information. 2020;11(4):193. https:// doi. org/ 10. 3390/ info1
10401 93.

 24. Stone M. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B (Methodol).
1974;36(2):111–33. https:// doi. org/ 10. 1111/j. 2517- 6161. 1974. tb009 94.x.

 25. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In:International
Joint Conference on Artificial Intelligence, vol. 14. Montreal, Quebec,Canada; 1995. pp. 1137–1143.

 26. Mortazavi A, Williams BA, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat
Methods. 2008;5(7):621–8. https:// doi. org/ 10. 1038/ nmeth. 1226.

 27. Garber M, Grabherr MG, Guttman M, et al. Computational methods for transcriptome annotation and quantifica-
tion using RNA-seq. Nat Methods. 2011;8(6):469–77. https:// doi. org/ 10. 1038/ nmeth. 1613.

 28. Zyprych-Walczak J, Szabelska A, Handschuh L, et al. The impact of normalization methods on RNA-seq data analy-
sis. Biomed Res Int. 2015;2015:1–10. https:// doi. org/ 10. 1155/ 2015/ 621690.

 29. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data.
Genome Biol. 2010;11(3):1–9. https:// doi. org/ 10. 1186/ gb- 2010- 11-3- r25.

 30. Bullard JH, Purdom E, Hansen KD, et al. Evaluation of statistical methods for normalization and differential expres-
sion in mRNA-Seq experiments. BMC Bioinform. 2010;11(1):1–13. https:// doi. org/ 10. 1186/ 1471- 2105- 11- 94.

 31. Anders S, Huber W. Differential expression analysis for sequence count data. Nat Preced. 2010. https:// doi. org/ 10.
1038/ npre. 2010. 4282.1.

 32. Evans C, Hardin J, Stoebel DM. Selecting between-sample RNA-Seq normalization methods from the perspective
of their assumptions. Brief Bioinform. 2018;19(5):776–92. https:// doi. org/ 10. 1093/ bib/ bbx008.

 33. Claesen M, Moor BD. Hyperparameter search in machine learning. arXiv preprint, 2015.
 34. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach Learn Res. 2012;13(2):281–305.
 35. Perez F, Granger BE, Hunter JD. Python: an ecosystem for scientific computing. Comput Sci Eng. 2010;13(2):13–21.

https:// doi. org/ 10. 1109/ mcse. 2010. 119.
 36. Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. Nature. 2020;585(7825):357–62.

https:// doi. org/ 10. 1038/ s41586- 020- 2649-2.
 37. Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0:fundamental algorithms for scientific computing in Python. Nat

Methods. 2020;17(3):261–72. https:// doi. org/ 10. 1038/ s41592- 019- 0686-2.
 38. McKinney W. Data structures for statistical computing in python. In: Jones E, Millman J (editors) Proceedings of the

9th Python in science, vol 445. SciPy, Austin, Texas; 2010. p. 51–6. https:// doi. org/ 10. 25080/ majora- 92bf1 922- 00a.
 39. Hunter JD. Matplotlib: a 2D graphics environment. Comput Sci Engi. 2007;9(3):90–5. https:// doi. org/ 10. 1109/ mcse.

2007. 55.
 40. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res.

2011;12:2825–30.
 41. Xianyi Z, Qian W, Yunquan Z. Model-driven level 3 BLAS performance optimization on Loongson 3A Processor. In:

Tang X, Xu C-Z (editors) 2012 IEEE 18th international conference on parallel and distributed systems. IEEE, Wash-
ington, DC; 2012. p. 684–91. https:// doi. org/ 10. 1109/ icpads. 2012. 97.

 42. Wang Q, Zhang X, Zhang Y, et al. AUGEM: automatically generate high performance dense linear algebra kernels
on x86 CPUs. In: Supinski BRd (editor) Proceedings of the international conference on high performance comput-
ing, networking, storage and analysis. ACM, New York; 2013. p. 1–12. https:// doi. org/ 10. 1145/ 25032 10. 25032 19.

 43. Daniel JC. Data science at scale with Python and Dask. 1st ed. Shelter Island: Manning Publications; 2019.
 44. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, Mccauley M, Franklin M, Shenker S, Stoica I. Fast and interactive

analytics over Hadoop data with spark. Usenix Login. 2012;37(4):45–51.
 45. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, et al.

Apache spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.
 46. Dotson David L, Seyler Sean L, Linke Max, et al. datreant: persistent, Pythonic trees for heterogeneous data. In:

Benthall S, Rostrup S (editors) Proceedings of the 15th Python in science conference; 2016. p. 51–6 . https:// doi.
org/ 10. 25080/ Majora- 629e5 41a- 007.

 47. Khoshlessan M, Paraskevakos I, Jha S, et al. Parallel analysis in MDAalysis using the Dask parallel computing library.
In: Ramachandran P, Rey S (editors) Proceedings of the 16th Python in science conference. SciPy, Austin, Texas;
2017. p. 64–72. https:// doi. org/ 10. 25080/ shinma- 7f4c6 e7- 00a.

https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1186/s12859-017-1984-2
https://doi.org/10.1186/s12859-017-1984-2
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1515/jib-2014-236
https://doi.org/10.1145/2939672.2939785
http://arxiv.org/abs/1603.02754
https://doi.org/10.1038/s41588-018-0160-6
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.25080/majora-7b98e3ed-013
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/info11040193
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1038/nmeth.1226
https://doi.org/10.1038/nmeth.1613
https://doi.org/10.1155/2015/621690
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/1471-2105-11-94
https://doi.org/10.1038/npre.2010.4282.1
https://doi.org/10.1038/npre.2010.4282.1
https://doi.org/10.1093/bib/bbx008
https://doi.org/10.1109/mcse.2010.119
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1109/icpads.2012.97
https://doi.org/10.1145/2503210.2503219
https://doi.org/10.25080/Majora-629e541a-007
https://doi.org/10.25080/Majora-629e541a-007
https://doi.org/10.25080/shinma-7f4c6e7-00a

Page 19 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

 48. Paraskevakos I, Luckow A, Khoshlessan M, et al. Task-parallel analysis of molecular dynamics trajectories. In: Malony
AD (editor) Proceedings of the 47th international conference on parallel processing. ACM, Eugene, Oregon; 2018.
p. 1–10. https:// doi. org/ 10. 1145/ 32250 58. 32251 28.

 49. Smith P, Lorenz CD. LiPyphilic: a Python toolkit for the analysis of lipid membrane simulations. J Chem Theory
Comput. 2021;17(9):5907–19. https:// doi. org/ 10. 1021/ acs. jctc. 1c004 47.

 50. Taylor-Weiner A, Aguet F, Haradhvala NJ, et al. Scaling computational genomics to millions of individuals with
GPUs. Genome Biol. 2019;20(1):1–5. https:// doi. org/ 10. 1186/ s13059- 019- 1836-7.

 51. Kruper J, Yeatman JD, Richie-Halford A, et al. Evaluating the reliability of human brain white matter tractometry.
bioarxiv; 2021. https:// doi. org/ 10. 1101/ 2021. 02. 24. 432740.

 52. Dugre M, Hayot-Sasson V, Glatard T. A performance comparison of Dask and Apache spark for data-intensive
neuroimaging pipelines. In: Taylor IJ (editor) 2019 IEEE/ACM workflows in support of large-scale science (WORKS).
IEEE, Denver, Colorado; 2019. p. 40–9. https:// doi. org/ 10. 1109/ works 49585. 2019. 00010.

 53. Wrede F, Hellander A. Smart computational exploration of stochastic gene regulatory network models using
human-in-the-loop semi-supervised learning. Bioinformatics. 2019;35(24):5199–206. https:// doi. org/ 10. 1093/ bioin
forma tics/ btz420.

 54. Jackson CA, Castro DM, Saldi G-A, et al. Gene regulatory network reconstruction using single-cell RNA sequencing
of barcoded genotypes in diverse environments. eLife. 2020;9:51254. https:// doi. org/ 10. 7554/ elife. 51254.

 55. Tran NC, Gao JX. OpenOmics: a bioinformatics API to integrate multi-omics datasets and interface with public
databases. J Open Source Softw. 2021;6(61):3249. https:// doi. org/ 10. 21105/ joss. 03249.

 56. Moerman T, Santos SA, González-Blas CB, et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene
regulatory networks. Bioinformatics. 2019;35(12):2159–61. https:// doi. org/ 10. 1093/ bioin forma tics/ bty916.

 57. Gibbs CS, Jackson CA, Saldi G-A, et al. High performance single-cell gene regulatory network inference at scale:
the Inferelator 3.0. bioRxiv; 2021. https:// doi. org/ 10. 1101/ 2021. 05. 03. 442499.

 58. Debelius JW, Robeson M, Hugerth LW, et al. A comparison of approaches to scaffolding multiple regions along the
16S rRNA gene for improved resolution. bioRxiv; 2021. https:// doi. org/ 10. 1101/ 2021. 03. 23. 436606.

 59. Palla G, Spitzer H, Klein M, et al. Squidpy: a scalable framework for spatial omics analysis. Nat Methods.
2022;19(2):171–8.

 60. RD Team. RAPIDS: collection of libraries for end to end GPU data science. Santa Clara: NVIDIA; 2018.
 61. Nolet C, Lal A, Ilango R, et al. Accelerating single-cell genomic analysis with gpus. bioRxiv; 2022.
 62. Gao M, Coletti M, Davidson RB, et al. Proteome-scale deployment of protein structure prediction workflows on the

summit supercomputer. arXiv preprint arXiv: 2201. 10024, 2022.
 63. Lam MD, Rothberg EE, Wolf ME. The cache performance and optimizations of blocked algorithms. ACM SIGOPS

Oper Syst Rev. 1991;25(Special Issue):63–74. https:// doi. org/ 10. 1145/ 106973. 106981.
 64. El-Rewini H, Ali HH, Lewis T. Task scheduling in multiprocessing systems. Computer. 1995;28(12):27–37. https:// doi.

org/ 10. 1109/2. 476197.
 65. Soneson C. compcoder-an r package for benchmarking differential expression methods for RNA-seq data. Bioin-

formatics. 2014;30(17):2517–8.
 66. Burrell RA, McGranahan N, Bartek J, et al. The causes and consequences of genetic heterogeneity in cancer evolu-

tion. Nature. 2013;501(7467):338–45. https:// doi. org/ 10. 1038/ natur e12625.
 67. Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168(4):629–43. https:// doi. org/ 10.

1016/j. cell. 2016. 12. 013.
 68. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20(11):631–56. https:// doi.

org/ 10. 1038/ s41576- 019- 0150-2.
 69. Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin.

2019;69(5):363–85. https:// doi. org/ 10. 3322/ caac. 21565.
 70. Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioin-

formatics. 2002;18(1):39–50. https:// doi. org/ 10. 1093/ bioin forma tics/ 18.1. 39.
 71. Li Y, Kang K, Krahn JM, et al. A comprehensive genomic pan-cancer classification using The Cancer Genome Atlas

gene expression data. BMC Genom. 2017;18(1):1–13. https:// doi. org/ 10. 1186/ s12864- 017- 3906-0.
 72. Kunz M, Löffler-Wirth H, Dannemann M, et al. RNA-seq analysis identifies different transcriptomic types and

developmental trajectories of primary melanomas. Oncogene. 2018;37(47):6136–51. https:// doi. org/ 10. 1038/
s41388- 018- 0385-y.

 73. Kim S-K, Kim H-J, Park J-L, et al. Identification of a molecular signature of prognostic subtypes in diffuse-type
gastric cancer. Gastric Cancer. 2020;23(3):473–82. https:// doi. org/ 10. 1007/ s10120- 019- 01029-4.

 74. Mostavi M, Chiu Y-C, Huang Y, et al. Convolutional neural network models for cancer type prediction based on
gene expression. BMC Med Genom. 2020;13(5):1–13. https:// doi. org/ 10. 1186/ s12920- 020- 0677-2.

 75. Khan J, Wei JS, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling
and artificial neural networks. Nat Med. 2001;7(6):673–9. https:// doi. org/ 10. 1038/ 89044.

 76. Fakoor R, Ladhak F, Nazi A, et al. Using deep learning to enhance cancer diagnosis and classication. In: Proceedings
of the international conference on machine learning, vol 28. ACM, New York; 2013. p. 3937–3949.

 77. Iqbal J, Wright G, Wang C, et al. Gene expression signatures delineate biological and prognostic subgroups
in peripheral T-cell lymphoma. Blood J Am Soc Hematol. 2014;123(19):2915–23. https:// doi. org/ 10. 1182/
blood- 2013- 11- 536359.

 78. Gerami P, Cook RW, Russell MC, et al. Gene expression profiling for molecular staging of cutaneous melanoma
in patients undergoing sentinel lymph node biopsy. J Am Acad Dermatol. 2015;72(5):780–5. https:// doi. org/ 10.
1016/j. jaad. 2015. 01. 009.

 79. Allen EMV, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, Sucker A, Hillen U, Foppen MHG, Goldinger SM,
Utikal J, Hassel JC, Weide B, Kaehler KC, Loquai C, Mohr P, Gutzmer R, Dummer R, Gabriel S, Wu CJ, Schaden-
dorf D, Garraway LA. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science.
2015;350(6257):207–11. https:// doi. org/ 10. 1126/ scien ce. aad00 95.

https://doi.org/10.1145/3225058.3225128
https://doi.org/10.1021/acs.jctc.1c00447
https://doi.org/10.1186/s13059-019-1836-7
https://doi.org/10.1101/2021.02.24.432740
https://doi.org/10.1109/works49585.2019.00010
https://doi.org/10.1093/bioinformatics/btz420
https://doi.org/10.1093/bioinformatics/btz420
https://doi.org/10.7554/elife.51254
https://doi.org/10.21105/joss.03249
https://doi.org/10.1093/bioinformatics/bty916
https://doi.org/10.1101/2021.05.03.442499
https://doi.org/10.1101/2021.03.23.436606
http://arxiv.org/abs/2201.10024
https://doi.org/10.1145/106973.106981
https://doi.org/10.1109/2.476197
https://doi.org/10.1109/2.476197
https://doi.org/10.1038/nature12625
https://doi.org/10.1016/j.cell.2016.12.013
https://doi.org/10.1016/j.cell.2016.12.013
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.1038/s41576-019-0150-2
https://doi.org/10.3322/caac.21565
https://doi.org/10.1093/bioinformatics/18.1.39
https://doi.org/10.1186/s12864-017-3906-0
https://doi.org/10.1038/s41388-018-0385-y
https://doi.org/10.1038/s41388-018-0385-y
https://doi.org/10.1007/s10120-019-01029-4
https://doi.org/10.1186/s12920-020-0677-2
https://doi.org/10.1038/89044
https://doi.org/10.1182/blood-2013-11-536359
https://doi.org/10.1182/blood-2013-11-536359
https://doi.org/10.1016/j.jaad.2015.01.009
https://doi.org/10.1016/j.jaad.2015.01.009
https://doi.org/10.1126/science.aad0095

Page 20 of 20Moreno et al. BMC Bioinformatics (2022) 23:514

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 80. Podolsky MD, Barchuk AA, Kuznetcov VI, et al. Evaluation of machine learning algorithm utilization for lung cancer
classification based on gene expression levels. Asian Pac J Cancer Prev. 2016;17(2):835–8. https:// doi. org/ 10. 7314/
apjcp. 2016. 17.2. 835.

 81. Wong N, Khwaja SS, Baker CM, et al. Prognostic micro RNA signatures derived from The Cancer Genome Atlas for
head and neck squamous cell carcinomas. Cancer Med. 2016;5(7):1619–28. https:// doi. org/ 10. 1002/ cam4. 718.

 82. Sinkala M, Mulder N, Martin D. Machine learning and network analyses reveal disease subtypes of pancreatic
cancer and their molecular characteristics. Sci Rep. 2020;10(1):1–14. https:// doi. org/ 10. 1038/ s41598- 020- 58290-2.

 83. Sparano JA, Gray RJ, Makower DF, et al. Prospective validation of a 21-gene expression assay in breast cancer. N
Engl J Med. 2015;373(21):2005–14. https:// doi. org/ 10. 1056/ nejmo a1510 764.

 84. Lim H-Y, Sohn I, Deng S, et al. Prediction of disease-free survival in hepatocellular carcinoma by gene expression
profiling. Ann Surg Oncol. 2013;20(12):3747–53. https:// doi. org/ 10. 1245/ s10434- 013- 3070-y.

 85. Tomczak K, Czerwińska P, Wiznerowicz M. Review The Cancer Genome Atlas (TCGA): an immeasurable source of
knowledge. Współczesna Onkologia. 2015;19(1A):68. https:// doi. org/ 10. 5114/ wo. 2014. 47136.

 86. Efremova M, Vento-Tormo R, Park J-E, et al. Immunology in the era of single-cell technologies. Annu Rev Immunol.
2020;38:727–57.

 87. Svensson V, Natarajan KN, Ly L-H, et al. Power analysis of single-cell RNA-sequencing experiments. Nat Methods.
2017;14(4):381–7.

 88. Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol.
2019;15(6):8746. https:// doi. org/ 10. 15252/ msb. 20188 746.

 89. Andrews TS, Kiselev VY, McCarthy D, et al. Tutorial: guidelines for the computational analysis of single-cell RNA
sequencing data. Nat Protoc. 2021;16(1):1–9.

 90. Madissoon E, Wilbrey-Clark A, Miragaia R, et al. scrna-seq assessment of the human lung, spleen, and esophagus
tissue stability after cold preservation. Genome Biol. 2020;21(1):1–16.

 91. Vohra D. Apache parquet. In: Practical Hadoop ecosystem. Berkeley, CA: Apress; 2016. p. 325–35.
 92. Lonsdale J, Thomas J, Salvatore M, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–

5. https:// doi. org/ 10. 1038/ ng. 2653.
 93. Lappalainen T, Sammeth M, Friedländer MR, et al. Transcriptome and genome sequencing uncovers functional

variation in humans. Nature. 2013;501(7468):506–11. https:// doi. org/ 10. 1038/ natur e12531.
 94. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature.

2012;489(7414):57–74. https:// doi. org/ 10. 1038/ natur e11247.
 95. Davis CA, Hitz BC, Sloan CA, et al. The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids

Res. 2018;46(D1):794–801. https:// doi. org/ 10. 1093/ nar/ gkx10 81.
 96. Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes. Nature.

2015;518(7539):317–30. https:// doi. org/ 10. 1038/ natur e14248.
 97. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med.

2018;50(8):1–14. https:// doi. org/ 10. 1038/ s12276- 018- 0071-8.
 98. Holt J, Sievert S. Training machine learning models faster with dask. In: SciPy conferences; 2021
 99. Petersohn D, Macke S, Xin D, et al. Towards scalable dataframe systems. VLDB Endow. 2020;13(12):2033–46. https://

doi. org/ 10. 14778/ 34077 90. 34078 07.
 100. Petersohn D, Tang D, Durrani R, et al. Flexible rule-based decomposition and metadata independence in modin: a

parallel dataframe system. Proc VLDB Endow. 2021;15(3):739–51. https:// doi. org/ 10. 14778/ 34941 24. 34941 52.
 101. Moritz P, Nishihara R, Wang S, et al. Ray: a distributed framework for emerging AI applications. In: 13th USENIX

symposium on operating systems design and implementation (OSDI 18). USENIX Association, Carlsbad, CA; 2018.
p. 561–577.

 102. Totoni E, Hassan WU, Anderson TA, et al. HiFrames: high performance data frames in a scripting language; 2017.
arXiv: 1704. 02341

 103. Breddels MA, Veljanoski J. Vaex: big data exploration in the era of Gaia. Astron Astrophys. 2018;618:13. https:// doi.
org/ 10. 1051/ 0004- 6361/ 20173 2493.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.7314/apjcp.2016.17.2.835
https://doi.org/10.7314/apjcp.2016.17.2.835
https://doi.org/10.1002/cam4.718
https://doi.org/10.1038/s41598-020-58290-2
https://doi.org/10.1056/nejmoa1510764
https://doi.org/10.1245/s10434-013-3070-y
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.15252/msb.20188746
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/nature12531
https://doi.org/10.1038/nature11247
https://doi.org/10.1093/nar/gkx1081
https://doi.org/10.1038/nature14248
https://doi.org/10.1038/s12276-018-0071-8
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3494124.3494152
http://arxiv.org/abs/1704.02341
https://doi.org/10.1051/0004-6361/201732493
https://doi.org/10.1051/0004-6361/201732493

	Scalable transcriptomics analysis with Dask: applications in data science and machine learning
	Abstract
	Background:
	Methods:
	Results:
	Conclusion:

	Background
	Building gene expression predictive models
	Scientific computing with Python
	Python concurrent and parallel computation
	Limitations of the scientific Python ecosystem

	Scalable data science
	Scaling computational biology with Dask
	The Dask framework

	Methods
	Assessing phenotype predictive model performance
	Generating datasets with different dimensionalities
	Cross-validation

	Hyper-parameter optimization
	Single-cell RNA-seq preprocessing

	Results
	Inferring phenotypes from cancer transcriptomic data
	Supervised learning tasks
	Dataset dimensionality
	Intensive optimization tasks

	Single-cell data analysis

	Discussion
	Dask usage guidelines for transcriptomics analysis

	Conclusions
	Acknowledgements
	References

