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ABSTRACT
A key issue in the performance of modern containerized distributed
systems, such as big data storage and processing stacks or micro-
service based applications, is the placement of each container, or
container pod, in virtual and physical servers. Although it has
been shown that inter-application traffic is an important factor
in placement decisions, as it directly indicates how components
interact, it has not been possible to accurately monitor it in an
application independent way, thus putting it out of reach of cloud
platforms.

In this paper we present an efficient black-box monitoring ap-
proach for detecting and building a weighted communication graph
of collaborating processes in a distributed system that can be queried
for various purposes, including adaptive placement. The key to
achieving high detail and low overhead without custom application
instrumentation is to use a kernel-aided event driven strategy. We
evaluate a prototype implementation with micro-benchmarks and
demonstrate its usefulness for container placement in a distributed
data storage and processing stack (i.e., Cassandra and Spark).
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1 INTRODUCTION
Distributed applications including multiple components and mul-
tiple instances of each component are increasingly managed with
containers, container pods, and container orchestrators. Containers
provide a lightweight virtualization technology in which the op-
erating system kernel and many resources can be shared between
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co-located components, reducing the resulting overhead. Container
pods formalize this by making it easy to share specific resources
and manage together tightly coupled components. Orchestrators
such as Kubernetes take care of managing a pool of resources and
placing component instances in them to compose complete services
and applications.

A key issue in determining the performance of an application is
the amount of data exchanged between different components. This
has been exploited at the VM level in cloud-based environments [5]
and at the process level in NUMA servers [14]. Accurately monitor-
ing inter-application traffic without instrumenting application, as
needed to dynamically determine the best placement, is however
hard to achieve. First, tracing tools that provide detailed informa-
tion about data flow need changes to the application [17], thus
making them unusable at the cloud platform level to be offered as
a service. Intercepting and processing all network traffic would be
possible in the platform, but would incur in a very large overhead.
Kernel-based tracing as in WeaveWorks Scope [20] automatically
detects processes, virtualized containers and hosts and established
connections. Briefly, it captures new connections an closed connec-
tions and updates a communication graph accordingly. However, it
falls short in quantifying the amount of data exchanged, as it cap-
tures only connection establishment and tear-down events.1 As we
show, directly generalizing Scope’s approach imposes a significant
overhead.

In this paper, we aim at efficient monitoring of distributed sys-
tems without requiring application-specific instrumentation or
knowledge. We achieve it by using eBPF (see Section 2) to intercept
key Linux system calls and by judiciously aggregating information
in the operating system kernel, within the confines of the limited
ability of kernel probes. For purposes of evaluation, we implement
a prototype monitoring agent and show that, even operating in a
black-box fashion, it builds a weighted graph representation of the
system reflecting the amount of data exchanged, and with negligi-
ble overhead. As a second contribution, we present an extensive
case study detailing how inter-application traffic can be used for
container placement, both automatically by the cloud platform itself
and by human operators.

The rest of this paper is organized as follows. Section 2 describes
existing operating system tracing approaches. Section 3 describes
the design and implementation of our approach. Section 4 validates
the proposed approach and Section 5 applies it to a data process-
ing system. Finally, Section 6 discusses related previous work and
Section 7 concludes the paper.

1https://github.com/weaveworks/scope/issues/3123
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2 BACKGROUND
The observation of system calls provides useful insights on which
and how components are interacting [10]. Our approach builds on
using eBPF to intercept the desired information. In this section
we provide a brief introduction to this technology and its limita-
tions, and to previous usage of eBPF to monitor inter-application
connections [20].

2.1 Monitoring with eBPF
Efficient interception of the execution path of system calls in Linux
is currently performed through Extended Berkeley Packet Filter
(eBPF), an increasingly popular technology for executing programs
passed from user space to kernel. The fundamental idea of eBPF is
to attach small custom programs to the available kernel tracepoints
and to the entry and exit points of kernel routines. The attached pro-
grams are compiled and then executed within a virtual machine in
an event-driven fashion, namely at every moment a specific kernel
routine is called or returns or when a tracepoint event is dispatched
by the kernel. These programs are also capable of performing some
sort of filtering, keeping state in data structures (e.g., hashes, arrays,
etc.) throughout probe invocation and send events from kernel to
user space using ring buffers, which are collected by a frontend
program.

When eBPF programs are installed, they become part of the exe-
cution path of instrumented kernel routines. Aiming at avoiding
kernel panics, data corruption, unbounded overhead and other dan-
gerous consequences that compromise correctness, eBPF imposes
several restrictions on what can be done in kernel. For instance,
loops are not allowed, reading fields of kernel structures requires
previously copying them and stack size is limited to 512 bytes. Such
restrictive technology demands planning variables declaration, def-
inition and instantiation of data structures. Additionally, choosing
the kernel routines that provide direct access to data of interest is
recommended, otherwise resulting copies of navigating throughout
kernel structures for accessing fields would rapidly hit stack size
limit.

2.2 Monitoring Connections
A new network connection is established, independently of the
programming language, when system calls connect and accept com-
plete and return, respectively, at the client and at the server. The
connection is then identified by two IP:PORT pairs. One identifies
the client’s endpoint and other the server’s one. In the Linux kernel,
it results in a new struct sock data structure, which contains the
local and remote addresses and ports. In order to match a client’s
connect with a server’s accept, the local address field must match
the remote field in the remote process and vice-versa.

Instrumenting syscalls directly does not provide the required
information to identify connected processes, as file descriptors are
meaningless outside the process context. Consequently, instrumen-
tation needs to be performed at a lower level in the call stack of each
connect/accept syscall. The kernel routines that handle structures
containing relevant information are tcp_connect and inet_csk_accept.
They can be intercepted to dispatche CONNECT events to the user
space, containing details of both the process and the connection.

The logic for capturing closed communication channels is a bit
distinct from the opening, since a connection may be closed for
several reasons besides the explicit close of its corresponding file
descriptor. The kernel routine that changes the state of a socket,
i.e., tcp_set_state, is intercepted and it checks if the new state is set
to closed. If so, a CLOSE event is dispatched to user space.

3 CAPTURING NETWORK METRICS
Our proposal is also to use eBPF to intercept key system calls, but
aggregate information within the operating system kernel, within
the confines of the limited ability of kernel probes, to limit the
amount of data that has to be copied to user mode to assemble the
weighted communication graph.

3.1 Monitoring Traffic
To use the same approach for measuring traffic we need to consider
that, for sending and receivedmessages operations, there are several
possible syscalls that can be executed by processes. Specifically,
write, sendto and sendmsg can be used to write data to a network
communication channel whereas read, recvfrom and recvmsg allows
processes to read data from the network channel.

In order to measure connection traffic kernel routines with ar-
guments containing connection details and size of data need to be
instrumented. Specifically, the immediate kernel routines that are
common execution paths of syscalls for writing to and reading from
network channels are sock_sendmsg and sock_recvmsg, respectively.
Intercepting the execution of such routines enables us to continu-
ously aggregate the total amount of data transferred through each
connection.

The aggregation of traffic per connection can be performed in
user and kernel space. The former triggers events on every send or
receive call which are then collected and processed by a frontend
program running in user space. This is easy to implement, as it is
the default usage of eBPF programs.

The latter approach is harder, as it requires information to be
stored and correlated within the kernel using the limited resources
provided by eBPF and decrease the amount of events passed to user
space.

In detail, kernel probes are attachable at two moments: at the
entry point of a kernel routine, i.e. kprobe, and when it returns,
i.e. kretprobe. At the entry point, kprobes is able to inspect the
arguments of the associated kernel routine.When the kernel routine
returns, kretprobes can read the returned value, if any. To extract
useful data from kernel probes, it is necessary to store temporary
state between both points of instrumentation. For instance, to make
a correspondence between returned values and arguments of a
kernel routine.

In practice, as processes may be calling and returning from this
routine interchangeably, it is mandatory to ensure that the returned
amount of bytes is associated to the corresponding sock argument.
To this end, and leveraging eBPF’s map structures, we keep <pid,
sock> entries between kprobe and kretprobe calls, where pid is the
kernel identifier of the process and sock the socket it is writing
to. Therefore, by accessing pid, we are able to recover the related
socket at the exit point and aggregate the amount of bytes.
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Moreover, we use a second map to store data transmitted so far
for each connection. For probe, we update the total and generate
new events only if an elapsed time or amount of data threshold is
met. Finally, on connection close, the final traffic amount is also
sent to user space.

3.2 Building the Communication Graph
Monitoring kernel routines at each endpoint is key for effectively
extracting interactions of running processes. However, the data
collected on each host only contains the view of one of the two
ends in a network channel.

All events are routed to a central location for processing, that
correlates them to establish an interaction between pairs of pro-
cesses. It consists of pairing the local and remote address fields with
the remote and local fields of other host and thus, it establishes
an inter-process interaction. Established interactions can be stored
in a graph database, which nodes represent processes and edges
the established connections between a pair of processes. The graph
representation of inter-process communication enables operators
to query the graph for analyzing system’s composition and com-
munication between components. For this paper, we chose Apache
Kafka for message queuing and Neo4j for storing and querying the
communication graph representation.

4 EVALUATION
To evaluate the proposed approach we first show how eBPF instru-
mentation behaves when generating a large number of events, as
would result from directly measuring network traffic without any
in-kernel aggregation. Then, we evaluate the overhead introduced
by our approach to measuring network traffic.

For both experiments, we use iperf as a worst-case workload.
It is a syscall-intensive network I/O tool for measuring the max-
imum achievable bandwidth on IP networks. We set up a single
n1-standard-2 instance in Google Cloud Platform equipped with 2
vCPUs and 7.5GB RAM. Within the same instance, we instantiated
a localhost iperf server and a client that sends, for six minutes,
fixed size messages to the server in order to measure the maximum
bandwidth.

4.1 eBPF Scalability
To push an event from kernel to user space, an eBPF program builds
a data structure and writes it in a ring buffer connecting both in-
kernel program and a frontend program running in user space. The
size of the ring buffer is the same as set by default by Scope [20],
i.e., 256 pages of 4KB. When the ring buffer hits the maximum size,
new events overwrite the oldest ones, leading to an increased loss
rate.

Figure 1 depicts how the loss rate evolves when throughput
increases. In iperf, as the size of each message sent from client to
server is reduced, the amount of executed syscalls for the same
amount of data increases and so the amount of events pushed from
kernel to user space.

High loss rates mean the kernel program is producing events
faster than the frontend program is consuming them. Even allo-
cating more pages for ring buffer, which maintain events stored
for a longer time and possibly contributing for lower loss rate, the
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Figure 1: Evolution of loss rate with increasing throughput.
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Figure 2: Throughput and CPU overhead.

frontend program still needs to process all pushed events, which
contributes to resource consumption, as we will show next. This
clearly shows why the naive extension of the technique used in
Scope [20] to monitor inter-application traffic is not viable.

4.2 Performance Impact
In this second experiment, we aim at measuring the impact of
capturing network metrics using eBPF, including on CPU usage.
We set iperf ’s message size to 128KB, which caused zero loss rate
in the eBPF scalability evaluation. For monitoring CPU usage, we
enabled dstat to collect data second by second and discarded the
first and the last thirty seconds of measurements.

We start by instrumenting kernel routines for capturing events
related to open and closed connections, much the same as in Scope.
We then extend it to collect network traffic metrics, namely the
amount of traffic per connection. This is done in two different
ways: First, by pushing events for each send/receive operation
and aggregating them in user space (i.e., UserAgg). Second, by
aggregating measurements in kernel structures and then pushing
events of traffic statistics (i.e., KernelAgg).
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Figure 2 shows the impact of both alternatives on iperf through-
put, as well as on CPU usage. Intercepting only connection estab-
lishment (i.e., Conn.) introduces negligible 1% overhead over the
baseline, since it only pushes events when a connection opens or
closes. In fact, the behavior of iperf supports such results since
it only creates a single connection, which is closed in the end of
benchmark.

In its turn, the Traffic (UserAgg) alternative enables instrumenta-
tion on send and receive operations and pushes a single event for
each executed operation. The results clearly show a high impact
on iperf performance, about 68%, mainly due to CPU usage in user
mode. The increased CPU usage in user mode is associated to the
significant amount of events pushed from kernel to user space and
then consumed by the frontend program, as previously depicted in
Figure 1. Again, this shows that a naive extension of Scope is not
viable for monitoring inter-application traffic.

Our proposal, the Traffic (KernelAgg) alternative, shows that
when moving from pushing an event for each operation to period-
ically pushing aggregated statistics, the overhead is significantly
lower, from 68% to 9%. In detail, and contrarily to user aggregation,
the impact on CPU usage is mainly on time spent in sys mode,
which is expected since the aggregation is performed in kernel
mode.

5 CASE STUDY
We now validate that the detail obtained by monitoring data ex-
change is valuable to determine the best placement of components
in physical resources.

5.1 Application scenario
We use a layered storage and processing system as the application
scenario. For the data storage layer we use the Cassandra NoSQL
data store. For the data processing layer we use Spark through its
SQL interface. Spark accesses data in Cassandra using the standard
spark-cassandra-connector.

This is an interesting case study as this is a typical architecture
for Big Data processing in the cloud and its performance depends
on various factors such as: data movement between the storage
and the processing layer, as Spark scans Cassandra tables; data
movement within Spark, as interim results are shuffled between
various processing stages needed; memory available to cache origi-
nal and interim data; and available CPU time, mainly in the Spark
processing layer.

For experiments, we populate the Cassandra database with 2
million randomly generated rows, each containing ten bigint and
four text fields (500 characters each in average). Each row is thus
approximately 2 KiB in size. We use two SQL queries (Q1 and Q2)
that we describe later, but that we design to minimize computation,
which at the same time reduces the time needed to run tests and
highlights monitoring overhead.

We use standard unmodified Docker containers for both Spark
and Cassandra. The test environment is composed of four n1-
standard-4 Google Compute Engine (GCE) instances (4 vCPUs and
15GB RAM), all in the same region and zone. All instances are
running the standard Ubuntu 16.04 LTS (xenial) GCE image. Kuber-
netes is installed with kubeadm and configured with the Flannel

Host CPU RAM Sent Received

Q1

instance-1 684 7119092 619296 665682
instance-2 685 7057948 636852 682645
instance-3 653 7044764 658822 584922
instance-4 687 7708228 659970 641691

Q2

instance-1 838 7307848 87137 103875
instance-2 847 7317072 82746 78151
instance-3 808 7313508 69435 108930
instance-4 869 8071772 131406 104929

Table 1: Resource usage in nodes (CPU in seconds, others in
KiB).

network fabric.2 Each instance is equipped with a local SSD scratch
disk used for all container image and volume storage.

We use a StatefulSet controller for Cassandra (4 replicas) and
Deployment controllers for Spark master (1 replica) and worker
roles (4 replicas). This results, by default, in having one Spark
worker and one Cassandra server in each server instance. The
Spark master is arbitrarily deployed to one of them. SQL jobs are
started with spark-submit running in the master container. For each
test, we start collecting monitoring data, submit the job and wait
for it to finish, and then stop collecting monitoring data.

5.2 Limitations of resource monitoring
We now establish a baseline by discussing what can be achieved
with traditional resource monitoring tools. Table 1 shows resource
usage metrics for server instance running each of the queries.

From these results we can observe that query Q2 requires more
CPU time than Q1, while transferring less data across the network.
Also, data transfer in Q1 is almost balanced while with Q2 instance-4
sends significantly more data than others.

We might thus speculate that workers in Q1 should be con-
centrated on a smaller number of server instances, to minimize
data exchange. Or that, in contrast, Q2 is amenable to using more
worker instances to leverage more CPUs as data exchange seems to
be much smaller. But we really do not know for sure, as we don not
know whether the data exchange observed is done mainly when
scanning data from Cassandra or when shuffling interim results
within Spark.

Actually, this is such an important issue that the Spark interface
exposes this information very clearly to allow the operator or an
automated optimizer to make decision. This does however assume
that the application is known and that the custom interface can be
used. Moreover, it assumes that such custom interface is exposed to
the cloud provider and that the cloud provider is able to understand
the needs of all potential applications.

The challenge is thus: How to make resource allocation and job
placement decisions based solely on data that can be obtained with-
out knowledge of the application, i.e., while treating the application
as a black-box?

5.3 Using data exchange monitoring
Taking advantage of information about data exchanged in the sys-
tem represented as a connection graph as described in Section 3,
2https://github.com/coreos/flannel
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(a) Q1 (b) Q2

Figure 3: Inter-host traffic with default placement.

(a) Q1 (b) Q2

Figure 4: Inter-process traffic with default placement.

we improve our understanding of host affinity. Figure 3 shows heat-
maps of inter-server traffic computed by projecting raw connection
graphs on physical server identifiers. In contrast to information
collected by cloud provider monitoring in the hypervisor, we also
get information about data exchanged within the server, among the
various processes. This points out a clear different between Q1 and
Q2: Data exchange in Q1 is actually higher than Table 1 has shown.
The majority of traffic in Q1 is within servers, as shown by the
main diagonal. Based on our knowledge of Spark and Cassandra,
we can derive this happens because Q1 is focused on scanning data
as, with each instance has one Spark worker and one Cassandra
server, this is the only way to get intra-host data exchange.

In contrast, Q2 has little intra-host traffic that is mostly uniform
except for instance-4 server that sends substantially more data to
all other hosts. In fact, instance-4 is where Spark master container,
hence also spark-submit, is running. We can speculate that the
traffic is related to shuffling in Spark, but we are not really sure, as
Cassandra servers also exchange some data. These conclusions are
however still not good enough, even if we had to use our knowledge
of the application derive them and they cannot easily be automated
for general workloads.

We can get actual evidence to confirm this speculation and avoid
making use of application-specific knowledge by projecting the
raw connection graphs on process types (i.e., their command lines),
as shown in Figure 4. Although this is achieved with a similar
query, it provides substantially different information, as it aggre-
gates information from different server instances as long as they are
running processes with the same command line. This information
confirms that Q1 is transferring data from Cassandra servers to
Spark CoarseGrainedExecutorBackend processes, which are part of

the Spark worker container. In addition, it confirms that most data
transferred in Q2 is between Spark workers.

A better understanding of what is happening can be obtained
by observing Figure 5 that shows how processes map to server
instances, as rendered by Graphviz. In detail, we set: node height
from used RAM; node line width from average CPU used; edge
width from amount of bytes exchanged (both directions) between
processes; and colors from commands and command-pairs for nodes
and edges, respectively. We also remove all edges that correspond to
less than 10% of traffic, to improve clarity. From colors, we can easily
glance that most of the data exchanged in each query is between
different processes. From node line widths, we can see that CPU
usage by Cassandra is more relevant in Q1. In short, it is clear that
Q1 is performing a scan of a large amount of data and that Q2 is
reading little data from Cassandra but performing a computation
that requires shuffling. The next challenge is how to take advantage
of these conclusions in both an automated application independent
way and manually by exploiting all possibilities in the application.

5.4 Automatic placement
In this section we show how the presented approach is compatible
with techniques for improving the placement of the workload in
an automated way without any application-specific knowledge. As
this is something that can be done by the cloud provider, we set as
the goal to pack the workload in the minimal number of servers and,
while doing it, to minimize network traffic with minimal impact in
user visible performance. This would allow, for instance, the cloud
provider to reduce the number of physical servers that need to be
powered on and to reduce a source of congestion.

To this end, we resort to Pyevolve, a genetic algorithm frame-
work written in pure Python, to build a simple optimizer that takes
an initial placement of containers in servers, each of them corre-
sponding to a set of processes, and outputs an optimized placement
as the end result. The genome is thus a simple vector, with one
element for each placeable component (container), and an integer
value identifying each possible location (server), which is supported
natively by Pyevolve. The fitness function for each individual out-
puts the product of three factors: optimal result for each server
where CPU cores are expected to be fully used, with a penalty for
each underused server and a (larger) penalty for each overused
server; optimal result for each server where RAM is expected to be
fully used, with a penalty for each underused server and a (larger)
penalty for each overused server; optimal result for no cross-server
communication, with a penalty for all data transferred.

Using this optimization strategy, we produce placements con-
sidering each of the benchmark queries. For query Q1 (Scan Opt.),
the result is to place two Spark workers and two Cassandra servers
in each server instance. For query Q2 (Shuffle Opt.), the result is
to place three Cassandra servers in one server instance, and the
remaining Cassandra together with all Spark workers in a second
instance. In both cases, this corresponds to using only 50% of the
resources initially allocated.

We then translate these results into placement constraints in
Kubernetes manifests and redeploy and retest both queries with
both placements to compare the results with the initial values.
The results in terms of exchanged network traffic are shown in
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Figure 5: Mapping of execution over hardware nodes with
default placement.

Baseline Scan Opt. Shuffle Opt.
Q1 2.46 GB 1.76 GB 1.96 GB
Q2 355.28 MB 270.42 MB 214.64 MB

Table 2: Network traffic with optimizations.

Table 2. It can be observed that although both strategies reduce inter-
host traffic, which is expected as the number of hosts is reduced,
using the strategy that is informed by inter-process data exchanged
obtained from instrumentation of read and write operations results
in greater reduction. Query runtime is degraded between 9% and
14%, always less with the Scan Opt. strategy based on monitoring
of Q1, which results in a more balanced CPU distribution.

(a) Q1 (b) Q2

Figure 6: Inter-host traffic after manual optimization.

(a) Q1 (b) Q2

Figure 7: Inter-process traffic after manual optimization.

5.5 Manual optimization
In this section we focus on improving application-specific configu-
ration but using only results obtained from black-box monitoring.
This is something that currently cannot be done easily by a cloud
provider and the orchestration system, but is interesting to the ap-
plication owner and operator. This way the operator can overcome
the lack of appropriate application specific monitoring tools and,
most interestingly, can use a single monitoring tool for complex
systems assembled from a variety of components, as is typical in
Big Data storage and processing.

First, aiming at optimizing for the Q1 workload, we modify Ku-
bernetes manifests to deploy each Spark worker together with a
Cassandra server within the same pod (Scan Opt.). This makes
them have the same IP address and allows Cassandra servers to
be recognized as local in the default topology detector. Second,
targeting the workload of Q2, we create an alternative deployment
configuration that uses only one worker with four times as much
resources assigned (Shuffle Opt.) in terms of CPU cores and RAM.

We then run each of the workloads in the corresponding config-
uration. Figure 6 shows that with Q1 almost all data exchanged is
within the same server instance. In contrast, in Q2 data is sent to
only a single server instance that is running the worker process.
Although in terms of inter-host network traffic this seems so differ-
ent, Figure 7 shows that actually they both correspond to the same
thing: Data is only sent almost exclusively from Cassandra servers
to Spark workers.

A better understanding of what has changed can be obtained
by observing Figure 8 that shows how processes map to server
instances as rendered by Graphviz. This figure directly compares
to the original Figure 5, where the same colors are used for the
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Figure 8: Mapping of execution over hardware nodes after
manual placement and configuration.

same process types and inter-process links. The consequence of this
change is shown in Table 3a, showing that the first optimization
reduces runtime of Q1 by 12% and the second reduces the runtime
of Q2 by 29%. Table 3b shows the impact in network traffic, which
is particularly dramatic with the scan optimization and the Q1
workload.

The difference between these results and those of Section 5.4
lead to an interesting conclusion. As long as one needs application
specific tools to monitor data exchange within distributed data
storage and processing systems, it makes sense that configuration
such as needed for the optimization of Q2, by trading workers
processes for additional resources, are also performed in application
specific ways. In fact, this configuration step for Spark needs to be
done twice: One by setting the number of cores for each worker

Baseline Scan Opt. Shuffle Opt.
Q1 34.33 (0.31) 30.19 (0.64) 31.87 (0.20)
Q2 52.96 (1.34) 51.95 (0.67) 37.30 (0.41)

(a) Runtime (in seconds, average of 10 runs, standard deviation in
parenthesis).

Baseline Scan Opt. Shuffle Opt.
Q1 2.46 GB 17.12 MB 2.67 GB
Q2 355.28 MB 279.56 MB 95MB

(b) Network traffic.

Table 3: Manually optimized placement and configuration.

in Spark configuration and the other in Kubernetes manifests to
make resources available.

However, now that we can infer the need for this optimization
in an application-independent way, it would be interesting to have
more standard and automatic ways to do this configuration. This
would allow, for example, a Kubernetes controller that can perform
such trade-off when informed by a monitoring system capable of
collecting connection traffic network metrics. This would nicely
complement the ability of Spark to detect and adapt to data locality.

6 RELATED WORK
Monitoring is a critical part of distributed systems deployments and
therefore, not only there are several monitoring tools available, as
there is an increasing research effort to build more capable monitor-
ing systems. Depending on how components are instrumented and
what metrics can be observed, current monitoring for distributed
systems operate at system and application levels.

The goal of system monitoring is to collect physical and virtual
infrastructure metrics, such as containers and virtual machines, or,
in other words, to monitor computational resource metrics. These
metrics are part of a wide set of processor, memory, network and
disk metrics. Popular tools like Ganglia [9], Nagios [19], Zabbix [21],
Riemann [16], Prometheus [18] and MonALISA [11] provide an
agent that periodically collects metrics during its execution and
push them into a monitor server. However, they are unable to
present resource utilization by collaborating processes within a
distributed system.

On a higher level, application-level monitoring relies on custom
agents, typically one per programming language, for instrument-
ing libraries and application’s source code in order to trace the
execution path of requests. Instrumentation is useful to identify
unusual behavior patterns that may help to identify the root-cause
of a given malfunction or misconfiguration. Google’s Dapper [15] is
a tracing infrastructure used in Google services that provides more
details about the behavior of Google’s infrastructure. Specifically, it
records request flow by annotating messages that are sent through
standard communication protocols such as Remote Procedure Calls
(RPC) or HTTP, which can be used to diagnosis latency in multi-
tier black-box services [13]. Other approaches such as D-Trace [2],
Magpie [1], X-Trace [4] or its variant Pivot Tracing [8] try to cap-
ture causality between distributed events to accurately pinpoint
the root-cause of software anomalies.
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All these approaches tackle take advantage from any prior knowl-
edge about the system, namely when administrators have easy
access to the infrastructure where the system is running, or instru-
ment libraries or application’s source code in order to trace the
execution path of requests. In order to alleviate this pain, there
is an ongoing effort on separation of concerns and standards for
context propagation for distributed systems. Canopy [6] is the Face-
book’s end-to-end performance tracing infrastructure and identifies
challenges and addresses them by decoupling aspects of context
propagation, instrumentation and trace representation. In [7] the
authors propose a layered architecture to separate the concerns
of system developers and tool developers, enabling independent
instrumentation of systems, and the deployment and evolution of
multiple tools. OpenTracing [17] is an ongoing effort to standardize
the APIs and instrumentation for distributed tracing.

When targeting the increasingly popular scale-out distributed
systems (e.g., for Big Data) or loosely-coupled micro-services de-
signs, it is hard tomonitor process interactions in detail, for example,
for placement decisions, without either instrumenting each applica-
tion or incurring in excessive tracing overhead. Several approaches
present different strategies to diagnose distributed systems. One
proposal is an online and scalable method to infer the influence
between components, in order to understand how a change in a
component X can affect the other components [12]. This approach
converts log time-stamped entries with raw measurements into
signals and correlates them, allowing the administrator to answer
queries regarding the influences on other components. Besides the
requirement to log time-stamped entries with raw measurements,
it relies on the influence between components which does not con-
tribute to map their direct communication. Similarly, Iprof [22] is a
request flow profiling tool that, from the statistically analysis of bi-
naries and log parsing, infers the execution flow from runtime logs
in black-box distributed systems. The approach in [3] generates
models for black-box embedded systems based on a timestamped
sequence of events, which result is a dependency graph of the sys-
tem. However, the used algorithm is exponential to the number of
events. To run this algorithm in polynomial time, some heuristics
are considered, compromising the accuracy of the output model.

7 CONCLUSION
Existing distributed monitoring systems either collect resource
usage at the system level in an application independent way and
with low overhead, or perform application-level tracing, that can
depict and quantify interactions between components in distributed
systems in great detail.

Our approach focuses on precisely quantifying the amount of
data exchanged between processes and thus provides a new trade-
off in between traditional monitoring approaches. In this paper we
describe how this can be achieved with very low overhead, com-
patible with usage on production systems, by taking advantage of
kernel probes in judiciously chosen operating system primitives and
by deferring the bulk of processing to an external graph database.

We validate the proposed approach with data-exchange intensive
micro-benchmark, showing less that 9% overhead. The usefulness
of the approach for drawing a variety of conclusions is shown with

a case study of Spark and Cassandra, that includes demonstration
of manual and automated configuration actions.
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