
Detailed Black-Box Monitoring of Distributed Systems

Francisco Neves, Ricardo Vilaça and José Pereira
HASLab - INESC TEC and University of Minho

Braga, Portugal
francisco.t.neves@inesctec.pt, {rmvilaca, jop}@di.uminho.pt

ABSTRACT
Modern containerized distributed systems, such as big data
storage and processing stacks or micro-service based appli-
cations, are inherently hard to monitor and optimize, as
resource usage does not directly match hardware resources
due to multiple virtualization layers. For instance, inter-
application traffic is an important factor in as it directly
indicates how components interact, it has not been possible
to accurately monitor it in an application independent way
and without severe overhead, thus putting it out of reach of
cloud platforms.

In this paper we present an efficient black-box monitoring
approach for gathering detailed structural information of
collaborating processes in a distributed system that can be
queried for various purposes, as it includes both information
about processes, containers, and hosts, as well as resource
usage and amount of data exchanged. The key to achieving
high detail and low overhead without custom application in-
strumentation is to use a kernel-aided event driven strategy.
We validate a prototype implementation by applying it to
multi-platform microservice deployments, evaluate its per-
formance with micro-benchmarks, and demonstrate its use-
fulness for container placement in a distributed data storage
and processing stack (i.e., Cassandra and Spark).

CCS Concepts
•Computer systems organization → Cloud comput-
ing;

Keywords
Containers, monitoring, adaptive placement.

1. INTRODUCTION
Distributed applications including multiple components and
multiple instances of each component are increasingly man-
aged with containers, container pods, and container orches-
trators. Containers provide a lightweight virtualization tech-
nology in which the operating system kernel and many re-
sources can be shared between co-located components, re-
ducing the resulting overhead. Container pods formalize this

Copyright is held by the authors. This work is based on an earlier work: SAC’20
Proceedings of the 2020 ACM Symposium on Applied Computing, Copyright
2020 ACM 978-1-4503-6866-7. http://dx.doi.org/10.1145/3341105.3374007

by making it easy to share specific resources and manage
together tightly coupled components. Orchestrators such as
Kubernetes take care of managing a pool of resources and
placing component instances in them to compose complete
services and applications.

A key issue in determining the performance of an application
is the amount of data exchanged between different compo-
nents. This has been exploited at the VM level in cloud-
based environments [5] and at the process level in NUMA
servers [14]. Accurately monitoring inter-application traf-
fic without instrumenting application, as needed to dynam-
ically determine the best placement, is however hard to
achieve. First, tracing tools that provide detailed informa-
tion about data flow need changes to the application [17],
thus making them unusable at the cloud platform level to
be offered as a service. Moreover, deploying a single in-
tegrated tracing infrastructure across multiple application
platforms and middleware components is challenging. Inter-
cepting and processing all network traffic would be possible
in the platform, but would incur in a very large overhead.
Kernel-based tracing as in WeaveWorks Scope [20] automati-
cally detects processes, virtualized containers and hosts and
established connections. Briefly, it captures new connec-
tions an closed connections and updates a communication
graph accordingly. However, it falls short in quantifying
the amount of data exchanged, as it captures only connec-
tion establishment and tear-down events.1 As we show, di-
rectly generalizing Scope’s approach imposes a significant
overhead.

In this paper, we aim at efficient monitoring of distributed
systems without requiring application-specific instrumenta-
tion or knowledge. We achieve it by using eBPF (see Sec-
tion 2) to intercept key Linux system calls and by judi-
ciously aggregating information in the operating system ker-
nel, within the confines of the limited ability of kernel probes.
For purposes of evaluation, we implement a prototype mon-
itoring agent and demonstrate that, even operating in a
black-box fashion, it builds a weighted graph representa-
tion of the system reflecting the amount of data exchanged,
and with negligible overhead. We demonstrate it with two
well known microservices-oriented application developed by
Google and WeaveWorks. Additionally, we present an ex-
tensive case study detailing how inter-application traffic can
be used for container placement, both automatically by the

1https://github.com/weaveworks/scope/issues/3123

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 24

cloud platform itself and by human operators.

The rest of this paper is organized as follows. Section 2 de-
scribes existing operating system tracing approaches. Sec-
tion 4 describes the design and implementation of our ap-
proach. Section 5 validates the proposed approach and Sec-
tion 7 applies it to a data processing system. Finally, Sec-
tion 8 discusses related previous work and Section 9 con-
cludes the paper.

2. BACKGROUND
The observation of system calls provides useful insights on
which and how components are interacting [10]. Our ap-
proach builds on using eBPF to intercept the desired infor-
mation. In this section we provide a brief introduction to
this technology and its limitations, and to previous usage of
eBPF to monitor inter-application connections [20].

2.1 Monitoring with eBPF
Efficient interception of the execution path of system calls
in Linux is currently performed through Extended Berkeley
Packet Filter (eBPF), an increasingly popular technology for
executing programs passed from user space to kernel. The
fundamental idea of eBPF is to attach small custom pro-
grams to the available kernel tracepoints and to the entry
and exit points of kernel routines. The attached programs
are compiled and then executed within a virtual machine
in an event-driven fashion, namely at every moment a spe-
cific kernel routine is called or returns or when a tracepoint
event is dispatched by the kernel. These programs are also
capable of performing some sort of filtering, keeping state in
data structures (e.g., hashes, arrays, etc.) throughout probe
invocation and send events from kernel to user space using
ring buffers, which are collected by a frontend program.

When eBPF programs are installed, they become part of
the execution path of instrumented kernel routines. Aim-
ing at avoiding kernel panics, data corruption, unbounded
overhead and other dangerous consequences that compro-
mise correctness, eBPF imposes several restrictions on what
can be done in kernel. For instance, loops are not allowed,
reading fields of kernel structures requires previously copy-
ing them and stack size is limited to 512 bytes. Such re-
strictive technology demands planning variables declaration,
definition and instantiation of data structures. Addition-
ally, choosing the kernel routines that provide direct ac-
cess to data of interest is recommended, otherwise resulting
copies of navigating throughout kernel structures for access-
ing fields would rapidly hit stack size limit.

2.2 Monitoring Connections
A new network connection is established, independently of
the programming language, when system calls connect and
accept complete and return, respectively, at the client and
at the server. The connection is then identified by two
IP:PORT pairs. One identifies the client’s endpoint and
other the server’s one. In the Linux kernel, it results in a
new struct sock data structure, which contains the local and
remote addresses and ports. In order to match a client’s
connect with a server’s accept, the local address field must
match the remote field in the remote process and vice-versa.

Instrumenting syscalls directly does not provide the required
information to identify connected processes, as file descrip-
tors are meaningless outside the process context. Conse-
quently, instrumentation needs to be performed at a lower
level in the call stack of each connect/accept syscall. The
kernel routines that handle structures containing relevant in-
formation are tcp connect and inet csk accept. They can be
intercepted to dispatch CONNECT events to the user space,
containing details of both the process and the connection.

The logic for capturing closed communication channels is
a bit distinct from the opening, since a connection may be
closed for several reasons besides the explicit close of its cor-
responding file descriptor. The kernel routine that changes
the state of a socket, i.e., tcp set state, is intercepted and
it checks if the new state is set to closed. If so, a CLOSE
event is dispatched to user space.

3. CAPTURING NETWORK METRICS
Our proposal is also to use eBPF to intercept key system
calls, but aggregate information within the operating system
kernel, within the confines of the limited ability of kernel
probes, to limit the amount of data that has to be copied to
user mode to assemble the weighted communication graph.

3.1 Monitoring Traffic
To use the same approach for measuring traffic we need to
consider that, for sending and received messages operations,
there are several possible syscalls that can be executed by
processes. Specifically, write, sendto and sendmsg can be
used to write data to a network communication channel
whereas read, recvfrom and recvmsg allows processes to read
data from the network channel.

In order to measure connection traffic kernel routines with
arguments containing connection details and size of data
need to be instrumented. The kernel routines that are com-
mon execution paths of syscalls for writing to and reading
from network channels are sock sendmsg and sock recvmsg,
respectively. Intercepting the execution of such routines en-
ables us to continuously aggregate the total amount of data
transferred through each connection.

The aggregation of traffic per connection can be performed
in user and kernel space. The former triggers events on every
send or receive call which are then collected and processed
by a frontend program running in user space. This is easy
to implement, as it is the default usage of eBPF programs.

The latter approach is harder, as it requires information to
be stored and correlated within the kernel using the limited
resources provided by eBPF and decrease the amount of
events passed to user space.

In detail, kernel probes are attachable at two moments: at
the entry point of a kernel routine, i.e. kprobe, and when
it returns, i.e. kretprobe. At the entry point, kprobes is
able to inspect the arguments of the associated kernel rou-
tine. When the kernel routine returns, kretprobes can read
the returned value, if any. To extract useful data from ker-
nel probes, it is necessary to store temporary state between
both points of instrumentation. For instance, to make a
correspondence between returned values and arguments of a

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 25

kernel routine.

In practice, as processes may be calling and returning from
this routine interchangeably, it is mandatory to ensure that
the returned amount of bytes is associated to the corre-
sponding sock argument. To this end, and leveraging eBPF’s
map structures, we keep <pid, sock> entries between kprobe
and kretprobe calls, where pid is the kernel identifier of the
process and sock the socket it is writing to. Therefore, by
accessing pid, we are able to recover the related socket at
the exit point and aggregate the amount of bytes.

Moreover, we use a second map to store data transmitted
so far for each connection. For probe, we update the total
and generate new events only if an elapsed time or amount
of data threshold is met. Finally, on connection close, the
final traffic amount is also sent to user space.

3.2 Building the Communication Graph
Monitoring kernel routines at each endpoint is key for effec-
tively extracting interactions of running processes. However,
the data collected on each host only contains the view of one
of the two ends in a network channel.

All events are routed to a central location for processing,
that correlates them to establish an interaction between
pairs of processes. It consists of pairing the local and re-
mote address fields with the remote and local fields of other
host and thus, it establishes an inter-process interaction. Es-
tablished interactions can be stored in a graph database,
which nodes represent processes and edges the established
connections between a pair of processes. The graph repre-
sentation of inter-process communication enables operators
to query the graph for analyzing system’s composition and
communication between components. For this paper, we
chose Apache Kafka for message queuing and Neo4j for stor-
ing and querying the communication graph representation.

4. PROTOTYPE IMPLEMENTATION
In this section, we present the prototype implementation of
our approach that monitors resource utilization and inter-
process interactions in a black-box fashion.

Figure 1 depicts the architecture of the prototype monitoring
system. One is able to identify two main components: Agent
and Data Processor. Briefly, the behavior the monitoring
system starts at the Agent module, that collects resource
utilization metrics and observes operations performed over
network communication channels. Then, the collected data
is sent to Data Processor, via event queue. In its turn, the
Data Processor component processes such data in order to
establish inter-process interactions and updates the graph
representation of the placement of processes as well of their
interactions.

The roles of message queue and graph database, within this
architecture, can be performed by an extensive set of tech-
nologies. For this prototype, we chose Apache Kafka for
message queueing and Neo4j for storing and querying the
graph representation. The discussion of such systems is out
of the scope of this paper, since they are easily replaceable
by other technologies. In the rest of this section, we describe
how each module works in detail.

Host A SysQuery agent

Data Processor

Event Queue
M M

SOCKET_CLOSED
pid: 13982
saddr: 85.92.12.11:9092
daddr: 92.93.13.11:10023
transmitted_bytes: 12056

User

Kernel

Application

syscall()

syscall()
execution path

eBPF hook
SysQuery probes
(eBPF program)

SysQuery
(eBPF frontend)

calls

emits events

consumes events

Graph
Database

update graph

M

/proc reader

Figure 1: Architecture of prototype monitoring sys-
tem. It comprises two main components: Agent and
Data Processor. The Agent leverages kernel probes
to collect and filter data in kernel space. The col-
lected data is then fetched by the frontend program
and sent to the Data Processor component, which
is responsible for updating the graph representation
accordingly.

4.1 Agent
The agent module operates at the operating system level.
Internally, it consists of a complete eBPF program (i.e., fron-
tend and backend) for probing of kernel routines and a /proc
reader for gathering hardware resource utilization metrics.

The included eBPF program enables user-defined probes
with purposes of detecting established and closed socket con-
nections as well as collecting the amount of traffic sent and
received during the lifetime of those channels. When a client
process establishes a new TCP socket connection, the eBPF
program creates a new socket kernel structure both in client
and server hosts, at the tcp connect and inet csk accept ker-
nel routines, respectively.

As kernel routines execute throughout the lifetime of the
processes, the eBPF program aggregates statistics and up-
dates a structure that maps network communication chan-
nels to the corresponding aggregated amount of bytes trans-
ferred during their lifetime. When a connection is estab-
lished or closed, the eBPF program prepares an event (i.e.,
SOCKET OPEN or SOCKET CLOSED), attaches the pro-
cess’ information, the corresponding socket information and
aggregated statistics. Finally, it pushes the event to the cir-
cular buffer of the eBPF program. In turn, the frontend
program receives the event and stores it in the event queue,
to be consumed in the future by Data Processor.

4.2 Data Processor
The Data Processor module present in this architecture is
thus responsible for performing the correlation between the
collected data on each host in order to extract interactions
between processes running in the system under monitoring
and update the graph representation accordingly.

After reading the collected data in respect with a given host
A, from the message queue, it seeks in graph storage system
whether the corresponding socket combination exists. De-

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 26

termining the socket combination is, in detail, looking for
a persisted socket which fields match the expected remote
endpoint. When the corresponding socket exists, it estab-
lishes a new edge between the involved processes.

When resource utilization metrics are received, the Data
Processor annotates each process node with the last mea-
surements. Therefore, having a graph representation of inter-
process communication and resource utilization, one is able
to leverage operators to query the graph for correlating an-
alyzing system’s composition, communication between com-
ponents and even resource utilization metrics.

Orchestrators and platforms for managing containerized work-
loads and services, like Kubernetes, usually implement a
form of Virtual IP through proxies. A black-box agent act-
ing at the operating system level is not aware of such virtual
network layer and thus the provided data is not enough to
accurately establish inter-process interactions. In order to
support network virtualization layers, Data Processor lever-
ages a map between local and virtual IPs to convert vir-
tual IP:Port addresses to the corresponding local addresses
before publishing into the graph database. This map, ob-
tained from those platforms via API call or a command-line
interface, re-enables the accuracy of effectively determining
inter-process interactions in virtualized environments.

5. EVALUATION
To evaluate the proposed approach we first show how eBPF
instrumentation behaves when generating a large number
of events, as would result from directly measuring network
traffic without any in-kernel aggregation. Then, we evalu-
ate the overhead introduced by our approach to measuring
network traffic.

For both experiments, we use iperf as a worst-case workload.
It is a syscall-intensive network I/O tool for measuring the
maximum achievable bandwidth on IP networks. We set up
a single n1-standard-2 instance in Google Cloud Platform
equipped with 2 vCPUs and 7.5GB RAM. Within the same
instance, we instantiated a localhost iperf server and a client
that sends, for six minutes, fixed size messages to the server
in order to measure the maximum bandwidth.

5.1 eBPF Scalability
To push an event from kernel to user space, an eBPF pro-
gram builds a data structure and writes it in a ring buffer
connecting both in-kernel program and a frontend program
running in user space. The size of the ring buffer is the same
as set by default by Scope [20], i.e., 256 pages of 4KB. When
the ring buffer hits the maximum size, new events overwrite
the oldest ones, leading to an increased loss rate.

Figure 2 depicts how the loss rate evolves when throughput
increases. In iperf, as the size of each message sent from
client to server is reduced, the amount of executed syscalls
for the same amount of data increases and so the amount of
events pushed from kernel to user space.

High loss rates mean the kernel program is producing events
faster than the frontend program is consuming them. Even
allocating more pages for ring buffer, which maintain events
stored for a longer time and possibly contributing for lower

 0

 20

 40

 60

 80

 100

128 64 32 16 8 4
0

15k

30k

45k

60k

75k

L
os

s
R

a
te

 (
%

)

E
ve

nt
 T

hr
ou

gh
p

ut
 (

e
ve

n
ts

/s
e

c)

Message Size (KBytes)

throughput loss

Figure 2: Evolution of loss rate with increasing
throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Baseline Conn. Traffic
 (UserAgg)

 Traffic
 (KernelAgg)

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
hp

ut
 (

G
b

its
/s

)

C
P

U
 u

sa
ge

 (
%

)

usr
sys

wai
siq

throughput

Figure 3: Throughput and CPU overhead.

loss rate, the frontend program still needs to process all
pushed events, which contributes to resource consumption,
as we will show next. This clearly shows why the naive ex-
tension of the technique used in Scope [20] to monitor inter-
application traffic is not viable.

5.2 Overhead
In this second experiment, we aim at measuring the impact
of capturing network metrics using eBPF, including on CPU
usage. We set iperf ’s message size to 128KB, which caused
zero loss rate in the eBPF scalability evaluation. For mon-
itoring CPU usage, we enabled dstat to collect data second
by second and discarded the first and the last thirty seconds
of measurements.

We instrument kernel routines for capturing events related
to open and closed connections, much the same as in Scope.
We then extend it to collect network traffic metrics, namely
the amount of traffic per connection. This is done in two dif-
ferent ways: First, by pushing events for each send/receive
operation and aggregating them in user space (i.e., User-
Agg). Second, by aggregating measurements in kernel struc-
tures and then pushing events of traffic statistics (i.e., Ker-
nelAgg).

Figure 3 shows the impact of both alternatives on iperf

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 27

throughput, as well as on CPU usage. Intercepting only
connection establishment (i.e., Conn.) introduces negligible
1% overhead over the baseline, since it only pushes events
when a connection opens or closes. In fact, the behavior
of iperf supports such results since it only creates a single
connection, which is closed in the end of benchmark.

In its turn, the Traffic (UserAgg) alternative enables instru-
mentation on send and receive operations and pushes a single
event for each executed operation. The results clearly show
a high impact on iperf performance, about 68%, mainly due
to CPU usage in user mode. The increased CPU usage in
user mode is associated to the significant amount of events
pushed from kernel to user space and then consumed by the
frontend program, as previously depicted in Figure 2. Again,
this shows that a naive extension of Scope is not viable for
monitoring inter-application traffic.

Our proposal, the Traffic (KernelAgg) alternative, shows
that when moving from pushing an event for each opera-
tion to periodically pushing aggregated statistics, the over-
head is significantly lower, from 68% to 9%. In detail, and
contrarily to user aggregation, the impact on CPU usage is
mainly on time spent in sys mode, which is expected since
the aggregation is performed in kernel mode.

6. COMPATIBILITY AT SCALE
The black-box nature of our approach enables seamless in-
tegration of applications built on a wide range of platforms
without the need for any modifications to their source code,
binaries, or even to their setup and deployment. In this
section, we validate the compatibility of our approach with
two complex and heterogeneous microservice-oriented appli-
cations: Hipster Shop2 and Sock Shop.3.

Developed by Google, Hipster Shop is an e-commerce sys-
tem built atop 10 heterogeneous microservices. The hetero-
geneity comes from the diversity of used programming lan-
guages: 4 services developed in Go (frontend, productcata-
log, shipping and checkout), 2 developed in Python (email
and recommendation), another 2 in Node.js (currency and
payment), and the remaining — cart and ads — in C# and
Java, respectively. They all communicate using gRPC and
use only a Redis instance to cache data.

Sock Shop is another web e-commerce system, developed
by WeaveWorks, mostly implemented in Java and Go, with
some Node.JS and .NET Core components. Besides the ap-
plicational services, it adopts MongoDB and MySQL for per-
sistent storage and RabbitMQ, implemented in Erlang, for
message passing among microservices during requests exe-
cutions.

6.1 Deployment
The repositories of both applications provide pre-built Docker
containers and Kubernetes manifests that make it possible
to deploy them with a single command. Alongside, they
also provide synthetic load generators based on Locust, that
make it easy to add traffic that exercises all the tiers. Fi-

2https://github.com/GoogleCloudPlatform/
microservices-demo
3https://microservices-demo.github.io/

nally, the provided Kubernetes manifests also often make
use of virtual IPs in service definitions.

Deployment of all tests uses standard unmodified Docker
containers for each of the systems orchestrated with Kuber-
netes using the originally provided Manifest files. The test
environment is composed of five n1-standard-4 Google Com-
pute Engine (GCE) instances (4 vCPUs and 15GB RAM),
all in the same region and zone. All instances are running
the standard Ubuntu 16.04 LTS (xenial) GCE image. Ku-
bernetes is installed with kubeadm and configured with the
Flannel network fabric.4 Each instance is equipped with a
local SSD scratch disk used for all container image and vol-
ume storage (i.e., the payload). The prototype that imple-
ments our Traffic (KernelAgg) approach is installed directly
in the host operating system and does not make use of the
local SSD disk. By using the the standard Kubernetes con-
figuration, one server instance is dedicated to the control
plane and the applications are spread-out to the remaining
four server instances. Additionally, we use the control plane
server to collect and save generated events to disk for off-line
processing.

6.2 Results
For each microservices-oriented application, we proceed as
follows. First we start the application and the load genera-
tor. Then, we start the monitoring agent and stop it after
a 40-second period, collecting and processing the data in
the database. Figure 4 depicts the resulting communication
graphs rendered with Graphviz, where each edge’s width is
proportional to the amount of data exchanged between the
connected services. In these figures, short process names
have been extracted from the full command line for legibil-
ity using an heuristic that depends on the platform. For
instance, if the command name is “java” then it looks for
the main class name. When directly querying Neo4j, the
full command line is available.

The resulting communication graph correctly depicts the
expected application architecture as described in their de-
sign documents.5 6 Even tough the microservices are de-
veloped in a wide set of programming languages and have
distinct requirements, our monitoring agent was able to de-
tect and collect statistics concerning the amount of data
exchanged between services. Additionally, Figure 4a un-
veils grpc_health_probe as used by Kubernetes manifests
to check for readiness and liveness of pods.

With these results, one is able to conclude that our black-
box approach is compatible with large, complex and hetero-
geneous architectures, various platforms and also overcomes
virtualization network layers (i.e. virtual IPs) without re-
quiring source code instrumentation. Additionally, we val-
idate the advantage of capturing actual data transmission
instead of simply connection set up and tear down. First, be-
cause some connections remain active throughout the moni-

4https://github.com/coreos/flannel
5https://github.com/GoogleCloudPlatform/
microservices-demo/blob/master/docs/img/
architecture-diagram.png
6https://github.com/microservices-demo/
microservices-demo.github.io/blob/HEAD/assets/
Architecture.png.

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 28

hipstershop.AdService

server

85BB
1 cnx.

grpc_health_probe
(x 7)

2KB
7 cnx.

checkoutservice

226BB
1 cnx../cartservice

2KB
4 cnx.

email_server.py

1KB
2 cnx.

grpc_health_probe
(x 3)

170BB
2 cnx.

grpc_health_probe
(x 5)

760BB
5 cnx.

102BB
1 cnx.

grpc_health_probe
(x 6)

2KB
6 cnx.

grpc_health_pro
(x 2)

grpc_health_probe
(x 18)

10KB
18 cnx.

/recommendation_server.py

115BB
1 cnx.

grpc_health_probe
(x 15)

6KB
15 cnx.

grpc_health_pro
(x 5)

1KB
5 cnx.

shippingservice

173BB
1 cnx.

1KB
4 cnx.

grpc_health_probe
(x 8)

2KB
8 cnx.

grpc_health_pro

381BB
1 cnx.

node

64BB
1 cnx.

2KB
5 cnx.

grpc_health_probe
(x 6)

2KB
6 cnx.

kubelet

2KB
10 cnx.

redis-server

1KB
25 cnx.

server

77BB
1 cnx.

1KB
2 cnx.

107BB
1 cnx.

grpc_health_probe
(x 6)

1KB
6 cnx.

kubelet node

1KB
2 cnx.

584BB
1 cnx.

grpc_health_probe
(x 6)

3KB
6 cnx.

(a) Hipster shop.

/usr/local/bin/locust
(x 22)

./app.jar

mongod

132KB
4 cnx.

node

965KB
412 cnx. ./app.jar

277KB
298 cnx.

./app.jar

303KB
222 cnx.

user

815KB
36 cnx.

15MB
110 cnx.

722KB
1723 cnx.

beam.smp

1MB
1749 cnx.

/usr/local/bin/locust
(x 15)

10MB
72 cnx.

coredns

app

982KB
767 cnx.

mysqld

93KB
11 cnx.

./app.jar

10KB
1 cnx.

mongod

935KB
8 cnx.

kubelet

628BB
4 cnx.

app

88KB
6 cnx.

mongod

1MB
5 cnx.

(b) Sock shop.

Figure 4: The obtained architecture of microservice benchmark applications. Each box represents a process
running in the deployment, as well as edges represent the amount of exchanged data. Without prior knowl-
edge regarding the organization of each application, our black-box results match the expected application
architecture according to their documentation.

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 29

toring period and there is no data regarding the utilization of
such connections. Other aspect is it provides useful insights
for performance improvements that otherwise would remain
hidden. For instance, in Sock Shop’s communication graph,
the large number of connections between the front-end and
user services, when compared to the amount of data actu-
ally transmitted, shows that they are not persistent, which
is inefficient.

7. CASE STUDY
We now validate that the detail obtained by monitoring data
exchange is valuable to determine the best placement of com-
ponents in physical resources.

7.1 Application scenario
We use a layered storage and processing system as the ap-
plication scenario. For the data storage layer we use the
Cassandra NoSQL data store. For the data processing layer
we use Spark through its SQL interface. Spark accesses data
in Cassandra using the standard spark-cassandra-connector.

This is an interesting case study as this is a typical architec-
ture for Big Data processing in the cloud and its performance
depends on various factors such as: data movement between
the storage and the processing layer, as Spark scans Cas-
sandra tables; data movement within Spark, as interim re-
sults are shuffled between various processing stages needed;
memory available to cache original and interim data; and
available CPU time, mainly in the Spark processing layer.

For experiments, we populate the Cassandra database with 2
million randomly generated rows, each containing ten big-

int and four text fields (500 characters each in average).
Each row is thus approximately 2 KiB in size. We use two
SQL queries (Q1 and Q2) that we describe later, but that
we design to minimize computation, which at the same time
reduces the time needed to run tests and highlights moni-
toring overhead.

We use standard unmodified Docker containers for both
Spark and Cassandra. The test environment is composed
of four n1-standard-4 Google Compute Engine (GCE) in-
stances (4 vCPUs and 15GB RAM), all in the same region
and zone. All instances are running the standard Ubuntu
16.04 LTS (xenial) GCE image. Kubernetes is installed with
kubeadm and configured with the Flannel network fabric.7

Each instance is equipped with a local SSD scratch disk used
for all container image and volume storage.

We use a StatefulSet controller for Cassandra (4 replicas)
and Deployment controllers for Spark master (1 replica) and
worker roles (4 replicas). This results, by default, in having
one Spark worker and one Cassandra server in each server
instance. The Spark master is arbitrarily deployed to one
of them. SQL jobs are started with spark-submit running
in the master container. For each test, we start collecting
monitoring data, submit the job and wait for it to finish,
and then stop collecting monitoring data.

7.2 Limitations of resource monitoring
7https://github.com/coreos/flannel

Table 1: Resource usage in nodes (CPU in seconds,
others in KiB).

Host CPU RAM Sent Received

Q1

instance-1 684 7119092 619296 665682
instance-2 685 7057948 636852 682645
instance-3 653 7044764 658822 584922
instance-4 687 7708228 659970 641691

Q2

instance-1 838 7307848 87137 103875
instance-2 847 7317072 82746 78151
instance-3 808 7313508 69435 108930
instance-4 869 8071772 131406 104929

(a) Q1 (b) Q2

Figure 5: Inter-host traffic with default placement.

We establish a baseline by discussing what can be achieved
with traditional resource monitoring tools. Table 1 shows
resource usage metrics for server instance running each of
the queries.

From these results we can observe that query Q2 requires
more CPU time than Q1, while transferring less data across
the network. Also, data transfer in Q1 is almost balanced
while with Q2 instance-4 sends significantly more data than
others.

We might thus speculate that workers in Q1 should be con-
centrated on a smaller number of server instances, to min-
imize data exchange. Or that, in contrast, Q2 is amenable
to using more worker instances to leverage more CPUs as
data exchange seems to be much smaller. But we really do
not know for sure, as we don not know whether the data
exchange observed is done mainly when scanning data from
Cassandra or when shuffling interim results within Spark.

Actually, this is such an important issue that the Spark in-
terface exposes this information very clearly to allow the
operator or an automated optimizer to make decision. This
does however assume that the application is known and that
the custom interface can be used. Moreover, it assumes that
such custom interface is exposed to the cloud provider and
that the cloud provider is able to understand the needs of
all potential applications.

The challenge is thus: How to make resource allocation and
job placement decisions based solely on data that can be
obtained without knowledge of the application, i.e., while
treating the application as a black-box?

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 30

(a) Q1 (b) Q2

Figure 6: Inter-process traffic with default place-
ment.

7.3 Using data exchange monitoring
Taking advantage of information about data exchanged in
the system represented as a connection graph as described
in Section 4, we improve our understanding of host affinity.
Figure 5 shows heat-maps of inter-server traffic computed by
projecting raw connection graphs on physical server identi-
fiers. In contrast to information collected by cloud provider
monitoring in the hypervisor, we also get information about
data exchanged within the server, among the various pro-
cesses. This points out a clear different between Q1 and
Q2: Data exchange in Q1 is actually higher than Table 1
has shown. The majority of traffic in Q1 is within servers,
as shown by the main diagonal. Based on our knowledge of
Spark and Cassandra, we can derive this happens because
Q1 is focused on scanning data as, with each instance has
one Spark worker and one Cassandra server, this is the only
way to get intra-host data exchange.

In contrast, Q2 has little intra-host traffic that is mostly uni-
form except for instance-4 server that sends substantially
more data to all other hosts. In fact, instance-4 is where
Spark master container, hence also spark-submit, is running.
We can speculate that the traffic is related to shuffling in
Spark, but we are not really sure, as Cassandra servers also
exchange some data. These conclusions are however still not
good enough, even if we had to use our knowledge of the ap-
plication derive them and they cannot easily be automated
for general workloads.

We can get actual evidence to confirm this speculation and
avoid making use of application-specific knowledge by pro-
jecting the raw connection graphs on process types (i.e.,
their command lines), as shown in Figure 6. Although this
is achieved with a similar query, it provides substantially
different information, as it aggregates information from dif-
ferent server instances as long as they are running processes
with the same command line. This information confirms
that Q1 is transferring data from Cassandra servers to Spark
CoarseGrainedExecutorBackend processes, which are part of
the Spark worker container. In addition, it confirms that
most data transferred in Q2 is between Spark workers.

A better understanding of what is happening can be ob-
tained by observing Figure 7 that shows how processes map
to server instances, as rendered by Graphviz. In detail, we
set: node height from used RAM; node line width from aver-
age CPU used; edge width from amount of bytes exchanged
(both directions) between processes; and colors from com-
mands and command-pairs for nodes and edges, respectively.

instance-1

instance-2
instance-4

instance-3

(9774)
CoarseGrainedExecutorBackend

CPU: 69% RAM: 374M

(31918)
CassandraDaemon

CPU: 34% RAM: 5G
265M

(2830)
CassandraDaemon

CPU: 44% RAM: 6G

197M

(26064)
CassandraDaemon

CPU: 31% RAM: 5G

212M

(2417)
CassandraDaemon

CPU: 32% RAM: 6G

223M

(12656)
CoarseGrainedExecutorBackend

CPU: 72% RAM: 356M

206M

(5001)
CoarseGrainedExecutorBackend
CPU: 73% RAM: 356M

196M

(11891)
CoarseGrainedExecutorBackend

CPU: 73% RAM: 347M

197M

258M

243M

180M

208M

233M

207M

(4923)
SparkSubmit

CPU: 25% RAM: 548M

(25365)
Master

CPU: 0% RAM: 267M
181M

261M

190M

(a) Q1

instance-1

instance-4

instance-2

instance-3
(20583)

CoarseGrainedExecutorBackend
CPU: 83% RAM: 553M

(31918)
CassandraDaemon

CPU: 10% RAM: 5G

6M

(19237)
SparkSubmit

CPU: 39% RAM: 670M

18M

(19333)
CoarseGrainedExecutorBackend

CPU: 82% RAM: 578M

40M

(26064)
CassandraDaemon
CPU: 9% RAM: 5G

6M

(2830)
CassandraDaemon

CPU: 13% RAM: 6G
7M

(23551)
CoarseGrainedExecutorBackend
CPU: 82% RAM: 576M

43M

(2417)
CassandraDaemon

CPU: 12% RAM: 6G

6M (22827)
CoarseGrainedExecutorBackend

CPU: 81% RAM: 582M

45M

6M
(32106)
Worker

CPU: 0% RAM: 171M

19M

(25365)
Master

CPU: 0% RAM: 264M

6M
18M

36M

22M

6M

20M

36M

(b) Q2

Figure 7: Mapping of execution over hardware
nodes with default placement.

We also remove all edges that correspond to less than 10% of
traffic, to improve clarity. From colors, we can easily glance
that most of the data exchanged in each query is between
different processes. From node line widths, we can see that
CPU usage by Cassandra is more relevant in Q1. In short,
it is clear that Q1 is performing a scan of a large amount of
data and that Q2 is reading little data from Cassandra but
performing a computation that requires shuffling. The next
challenge is how to take advantage of these conclusions in
both an automated application independent way and man-
ually by exploiting all possibilities in the application.

7.4 Automatic placement
In this section we show how the presented approach is com-
patible with techniques for improving the placement of the
workload in an automated way without any application-
specific knowledge. As this is something that can be done

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 31

Table 2: Network traffic with optimizations.

Baseline Scan Opt. Shuffle Opt.
Q1 2.46 GB 1.76 GB 1.96 GB
Q2 355.28 MB 270.42 MB 214.64 MB

by the cloud provider, we set as the goal to pack the work-
load in the minimal number of servers and, while doing it,
to minimize network traffic with minimal impact in user vis-
ible performance. This would allow, for instance, the cloud
provider to reduce the number of physical servers that need
to be powered on and to reduce a source of congestion.

To this end, we resort to Pyevolve, a genetic algorithm
framework written in pure Python, to build a simple opti-
mizer that takes an initial placement of containers in servers,
each of them corresponding to a set of processes, and out-
puts an optimized placement as the end result. The genome
is thus a simple vector, with one element for each place-
able component (container), and an integer value identifying
each possible location (server), which is supported natively
by Pyevolve. The fitness function for each individual out-
puts the product of three factors: optimal result for each
server where CPU cores are expected to be fully used, with
a penalty for each underused server and a (larger) penalty
for each overused server; optimal result for each server where
RAM is expected to be fully used, with a penalty for each
underused server and a (larger) penalty for each overused
server; optimal result for no cross-server communication,
with a penalty for all data transferred.

Using this optimization strategy, we produce placements
considering each of the benchmark queries. For query Q1
(Scan Opt.), the result is to place two Spark workers and
two Cassandra servers in each server instance. For query
Q2 (Shuffle Opt.), the result is to place three Cassandra
servers in one server instance, and the remaining Cassandra
together with all Spark workers in a second instance. In both
cases, this corresponds to using only 50% of the resources
initially allocated.

We then translate these results into placement constraints in
Kubernetes manifests and redeploy and retest both queries
with both placements to compare the results with the initial
values. The results in terms of exchanged network traffic
are shown in Table 2. It can be observed that although
both strategies reduce inter-host traffic, which is expected
as the number of hosts is reduced, using the strategy that is
informed by inter-process data exchanged obtained from in-
strumentation of read and write operations results in greater
reduction. Query runtime is degraded between 9% and 14%,
always less with the Scan Opt. strategy based on monitoring
of Q1, which results in a more balanced CPU distribution.

7.5 Manual optimization
In this section we focus on improving application-specific
configuration but using only results obtained from black-box
monitoring. This is something that currently cannot be done
easily by a cloud provider and the orchestration system, but
is interesting to the application owner and operator. This
way the operator can overcome the lack of appropriate ap-
plication specific monitoring tools and, most interestingly,

(a) Q1 (b) Q2

Figure 8: Inter-host traffic after manual optimiza-
tion.

(a) Q1 (b) Q2

Figure 9: Inter-process traffic after manual opti-
mization.

can use a single monitoring tool for complex systems assem-
bled from a variety of components, as is typical in Big Data
storage and processing.

First, aiming at optimizing for the Q1 workload, we mod-
ify Kubernetes manifests to deploy each Spark worker to-
gether with a Cassandra server within the same pod (Scan
Opt.). This makes them have the same IP address and al-
lows Cassandra servers to be recognized as local in the de-
fault topology detector. Second, targeting the workload of
Q2, we create an alternative deployment configuration that
uses only one worker with four times as much resources as-
signed (Shuffle Opt.) in terms of CPU cores and RAM.

We then run each of the workloads in the corresponding
configuration. Figure 8 shows that with Q1 almost all data
exchanged is within the same server instance. In contrast,
in Q2 data is sent to only a single server instance that is
running the worker process. Although in terms of inter-
host network traffic this seems so different, Figure 9 shows
that actually they both correspond to the same thing: Data
is only sent almost exclusively from Cassandra servers to
Spark workers.

A better understanding of what has changed can be obtained
by observing Figure 10 that shows how processes map to
server instances as rendered by Graphviz. This figure di-
rectly compares to the original Figure 7, where the same
colors are used for the same process types and inter-process
links. The consequence of this change is shown in Table 3a,
showing that the first optimization reduces runtime of Q1
by 12% and the second reduces the runtime of Q2 by 29%.
Table 3b shows the impact in network traffic, which is par-
ticularly dramatic with the scan optimization and the Q1

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 32

instance-4 instance-2

instance-3 instance-1

(4969)
SparkSubmit

CPU: 45% RAM: 663M

(5066)
CoarseGrainedExecutorBackend

CPU: 78% RAM: 347M (24627)
CassandraDaemon

CPU: 23% RAM: 5G
941M

(24037)
Master

CPU: 0% RAM: 263M
(5866)

CoarseGrainedExecutorBackend
CPU: 68% RAM: 370M

(27524)
CassandraDaemon

CPU: 26% RAM: 5G

1G

(5492)
CoarseGrainedExecutorBackend

CPU: 74% RAM: 354M

(26521)
CassandraDaemon

CPU: 23% RAM: 5G

1G

(3011)
CoarseGrainedExecutorBackend

CPU: 71% RAM: 356M

(24459)
CassandraDaemon

CPU: 25% RAM: 5G

1G

(a) Q1

instance-4

instance-1

instance-2

instance-3

(5772)
CassandraDaemon

CPU: 10% RAM: 6G

(5062)
CassandraDaemon

CPU: 12% RAM: 6G

(20392)
CoarseGrainedExecutorBackend

CPU: 270% RAM: 978M

(6403)
Master

CPU: 0% RAM: 215M

(15579)
SparkSubmit

CPU: 39% RAM: 612M

21M
24M

(5053)
CassandraDaemon

CPU: 14% RAM: 5G
23M(5186)

CassandraDaemon
CPU: 16% RAM: 5G

23M

(b) Q2

Figure 10: Mapping of execution over hardware
nodes after manual placement and configuration.

workload.

The difference between these results and those of Section 7.4
lead to an interesting conclusion. As long as one needs ap-
plication specific tools to monitor data exchange within dis-
tributed data storage and processing systems, it makes sense
that configuration such as needed for the optimization of
Q2, by trading workers processes for additional resources,
are also performed in application specific ways. In fact, this
configuration step for Spark needs to be done twice: One by
setting the number of cores for each worker in Spark con-
figuration and the other in Kubernetes manifests to make
resources available.

However, now that we can infer the need for this optimiza-
tion in an application-independent way, it would be inter-
esting to have more standard and automatic ways to do this
configuration. This would allow, for example, a Kubernetes
controller that can perform such trade-off when informed by

Table 3: Manually optimized placement and config-
uration.

(a) Runtime (in seconds, average of 10 runs, standard
deviation in parenthesis).

Baseline Scan Opt. Shuffle Opt.
Q1 34.33 (0.31) 30.19 (0.64) 31.87 (0.20)
Q2 52.96 (1.34) 51.95 (0.67) 37.30 (0.41)

(b) Network traffic.

Baseline Scan Opt. Shuffle Opt.
Q1 2.46 GB 17.12 MB 2.67 GB
Q2 355.28 MB 279.56 MB 95MB

Table 4: Runtime of benchmark queries without
and with instrumentation (in seconds, average of 10
runs, standard deviation in parenthesis).

Baseline Instrumented Overhead
Q1 31.67 (0.38) 31.95 (0.26) 0.88%
Q2 47.20 (0.58) 48.41 (0.44) 2.56%

a monitoring system capable of collecting connection traffic
network metrics. This would nicely complement the ability
of Spark to detect and adapt to data locality.

7.6 Monitoring Overhead
Monitoring introduces overhead on the system under moni-
toring. In this section, we measure the monitoring overhead
introducing by our approach by comparing the runtime of
both benchmark queries without and with instrumentation.
Table 4 summarizes the results for each of the test queries
both without (Baseline) and with instrumentation enabled
(Instrumented). We repeat each test ten times and show
mean and standard deviation values. We thus confirm that
the overhead of enabling instrumentation on read an write
operations is in line with the result of micro-benchmarks in
Section 5.2 and compatible with a production system.

We also observed that with this workload each server in-
stance generates 3.13 events/s. As we have observed that
with the current proof-of-concept implementation in Python
a single core can ingest 1400 events/s into Neo4j, this con-
firms that a single commodity server would be able to cope
with events from a deployment with hundreds of hosts run-
ning a similar workload and, at the same time, handle queries
on the collected data.

8. RELATED WORK
Monitoring is a critical part of distributed systems deploy-
ments and therefore, not only there are several monitoring
tools available, as there is an increasing research effort to
build more capable monitoring systems. Depending on how
components are instrumented and what metrics can be ob-
served, current monitoring for distributed systems operate
at system and application levels.

The goal of system monitoring is to collect physical and
virtual infrastructure metrics, such as containers and vir-
tual machines, or, in other words, to monitor computa-

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 33

tional resource metrics. These metrics are part of a wide
set of processor, memory, network and disk metrics. Pop-
ular tools like Ganglia [9], Nagios [19], Zabbix [21], Rie-
mann [16], Prometheus [18] and MonALISA [11] provide an
agent that periodically collects metrics during its execution
and push them into a monitor server. However, they are
unable to present resource utilization by collaborating pro-
cesses within a distributed system.

On a higher level, application-level monitoring relies on cus-
tom agents, typically one per programming language, for
instrumenting libraries and application’s source code in or-
der to trace the execution path of requests. Instrumentation
is useful to identify unusual behavior patterns that may help
to identify the root-cause of a given malfunction or miscon-
figuration. Google’s Dapper [15] is a tracing infrastructure
used in Google services that provides more details about the
behavior of Google’s infrastructure. Specifically, it records
request flow by annotating messages that are sent through
standard communication protocols such as Remote Proce-
dure Calls (RPC) or HTTP, which can be used to diagno-
sis latency in multi-tier black-box services [13]. Other ap-
proaches such as D-Trace [2], Magpie [1], X-Trace [4] or its
variant Pivot Tracing [8] try to capture causality between
distributed events to accurately pinpoint the root-cause of
software anomalies.

All these approaches tackle take advantage from any prior
knowledge about the system, namely when administrators
have easy access to the infrastructure where the system is
running, or instrument libraries or application’s source code
in order to trace the execution path of requests. In order to
alleviate this pain, there is an ongoing effort on separation
of concerns and standards for context propagation for dis-
tributed systems. Canopy [6] is the Facebook’s end-to-end
performance tracing infrastructure and identifies challenges
and addresses them by decoupling aspects of context propa-
gation, instrumentation and trace representation. In [7] the
authors propose a layered architecture to separate the con-
cerns of system developers and tool developers, enabling in-
dependent instrumentation of systems, and the deployment
and evolution of multiple tools. OpenTracing [17] is an on-
going effort to standardize the APIs and instrumentation for
distributed tracing.

When targeting popular scale-out distributed systems (e.g.,
for Big Data) or loosely-coupled micro-services designs, it
is hard to monitor process interactions in detail, for exam-
ple, for placement decisions, without either instrumenting
each application or incurring in excessive tracing overhead.
Several approaches present different strategies to diagnose
distributed systems. One proposal is an online and scal-
able method to infer the influence between components, in
order to understand how a change in a component X can af-
fect the other components [12]. This approach converts log
time-stamped entries with raw measurements into signals
and correlates them, allowing the administrator to answer
queries regarding the influences on other components. Be-
sides the requirement to log time-stamped entries with raw
measurements, it relies on the influence between components
which does not contribute to map their direct communica-
tion. Similarly, Iprof [22] is a request flow profiling tool
that, from the statistically analysis of binaries and log pars-

ing, infers the execution flow from runtime logs in black-box
distributed systems. The approach in [3] generates models
for black-box embedded systems based on a timestamped se-
quence of events, which result is a dependency graph of the
system. However, the used algorithm is exponential to the
number of events. To run this algorithm in polynomial time,
some heuristics are considered, compromising the accuracy
of the output model.

9. CONCLUSION
Existing distributed monitoring systems either collect re-
source usage at the system level in an application indepen-
dent way and with low overhead, or perform application-
level tracing, that can depict and quantify interactions be-
tween components in distributed systems in great detail.

Our approach focuses on precisely quantifying the amount
of data exchanged between processes and thus provides a
new trade-off in between traditional monitoring approaches.
In this paper we describe how this can be achieved with very
low overhead, compatible with usage on production systems,
by taking advantage of kernel probes in judiciously chosen
operating system primitives and by deferring the bulk of
processing to an external graph database.

We validate the proposed approach with data-exchange in-
tensive micro-benchmark, showing less that 9% overhead.
We also demonstrate the compatibility of our approach by
validating it with two well known complex and heteroge-
neous microservices applications developed by Google and
WeaveWorks. Finally, the usefulness of the approach for
drawing a variety of conclusions is shown with a case study of
Spark and Cassandra, that includes demonstration of man-
ual and automated configuration actions.

10. ACKNOWLEDGEMENTS
This work is financed by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência e a
Tecnologia within project: UID/EEA/50014/2019.

11. REFERENCES
[1] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan.

Magpie: Online modelling and performance-aware
systems. In HotOS, pages 85–90, 2003.

[2] B. Cantrill, M. W. Shapiro, A. H. Leventhal, et al.
Dynamic instrumentation of production systems. In
USENIX Annual Technical Conference, General
Track, pages 15–28, 2004.

[3] T. H. Feng, L. Wang, W. Zheng, S. Kanajan, and
S. A. Seshia. Automatic model generation for black
box real-time systems. In Design, Automation & Test
in Europe Conference & Exhibition, 2007. DATE’07,
pages 1–6. IEEE, 2007.

[4] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-trace: A pervasive network tracing
framework. In Proceedings of the 4th USENIX
conference on Networked systems design &
implementation, pages 20–20. USENIX Association,
2007.

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 34

[5] I. Giurgiu, C. Castillo, A. Tantawi, and M. Steinder.
Enabling efficient placement of virtual infrastructures
in the cloud. In ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and
Open Distributed Processing, pages 332–353. Springer,
2012.

[6] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa,
J. O’Neill, K. W. Ong, B. Schaller, P. Shan,
B. Viscomi, et al. Canopy: An end-to-end performance
tracing and analysis system. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages
34–50. ACM, 2017.

[7] J. Mace and R. Fonseca. Universal context
propagation for distributed system instrumentation. In
Proceedings of the Thirteenth EuroSys Conference,
page 8. ACM, 2018.

[8] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing:
Dynamic causal monitoring for distributed systems. In
Proceedings of the 25th Symposium on Operating
Systems Principles, pages 378–393. ACM, 2015.

[9] M. L. Massie, B. N. Chun, and D. E. Culler. The
ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[10] F. Neves, N. Machado, and J. Pereira. Falcon: A
practical log-based analysis tool for distributed
systems. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 534–541, June 2018.

[11] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu,
and C. Cirstoiu. Monalisa: A distributed monitoring

service architecture. arXiv preprint cs/0306096, 2003.

[12] A. J. Oliner and A. Aiken. Online detection of
multi-component interactions in production systems.
In Dependable Systems & Networks (DSN), 2011
IEEE/IFIP 41st International Conference on, pages
49–60. IEEE, 2011.

[13] K. Ostrowski, G. Mann, and M. Sandler. Diagnosing
latency in multi-tier black-box services. 2011.

[14] I. Sánchez Barrera, M. Casas, M. Moretó, E. Ayguadé,
J. Labarta, and M. Valero. Graph partitioning applied
to dag scheduling to reduce numa effects. SIGPLAN
Not., 53(1):419–420, Feb. 2018.

[15] B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan, and
C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report,
Technical report, Google, 2010.

[16] http://riemann.io/. Riemann - a network
monitoring system.

[17] https://opentracing.io/. Opentracing.

[18] https://prometheus.io/. Prometheus - monitoring
system and time series database.

[19] https://www.nagios.org/. The industry standard in
it infrastructure monitoring.

[20] https://www.weave.works/oss/scope/. Weave scope.

[21] https://www.zabbix.com/. The enterprise-class
monitoring solution for everyone.

[22] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo,
D. Yuan, and M. Stumm. lprof: A non-intrusive
request flow profiler for distributed systems.

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 35

ABOUT THE AUTHORS:

Francisco Neves is a Ph.D student at HASLab, University of Minho & INESC TEC,
working on performance analysis and debugging of distributed systems using black-
box techniques. He received a graduate degree and a master’s degree in informatics
in 2013 and 2015, respectively, both from University of Minho. He is currently an
invited assistant professor at the Computer Science Department, University of
Minho.

Ricardo Vilaça is currently senior researcher at MACC and HASLab, University of
Minho & INESC TEC, working on high performance computing in both parallel and
distributed systems. He obtained his Ph.D in the MAP-i Doctoral Programme in
Computer Science in 2012. He has a strong background in distributed systems and
large-scale data management. He has around 15 years of experience in national and
international research projects in distributed systems: secure and large-scale query
processing, cloud computing, NoSQL and SQL databases, and database replication.
He had co-supervise several research grant holders and master thesis. He had
published research papers on large scale and dependable distributed systems and has
served as reviewer for several highly reputed conferences and workshops.

José Pereira received a graduate degree in computer engineering and informatics in
1995. He received his master’s degree and PhD degree in computer science from the
University of Minho in 1998 and 2002, respectively. He is currently an assistant
professor at the Computer Science Department, University of Minho. He has been
doing research in reliable distributed systems, in particular, in group communication,
database systems, and distributed monitoring.

APPLIED COMPUTING REVIEW MAR. 2021, VOL. 21, NO. 1 36

