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Abstract—Encrypted databases systems and searchable encryp-
tion schemes still leak critical information (e.g.: access patterns)
and require a choice between privacy and efficiency. We show that
using ORAM schemes as a black-box is not a panacea and that
optimizations are still possible by improving the data structures.

We design an ORAM-based secure database that is built from
the ground up: we replicate the typical data structure of a
database system using different optimized ORAM constructions
and derive a new solution for oblivious searches on databases.
Our construction has a lower bandwidth overhead than state-of-
the-art ORAM constructions by moving client-side computations
to a proxy with an intermediate (rigorously defined) level of trust,
instantiated as a server-side isolated execution environment.

We formally prove the security of our construction and show
that its access patterns depend only on public information. We
also provide an implementation compatible with SQL databases
(PostgresSQL). Our system is 1.2 times to 4 times faster than
state-of-the-art ORAM-based solutions.

I. INTRODUCTION

Symmetric searchable encryption (SSE) schemes are used
to address the problem of outsourcing private databases to
an untrusted third-party. These schemes enable a client to
store encrypted data in a third-party and evaluate queries
remotely over ciphertexts. Conceptually, SSE schemes create
an encrypted index that maps keywords to a set of documents
identifiers, with each identifier pointing to an actual document.
The index as well as the documents are encrypted by the
client and stored on the remote server. The client can query
the index by generating cryptographic tokens for a specific
keyword. Given a token as an input, the server can search the
index and find the set of documents that contain the queried
keyword without having to decrypt any data. However, SSE
schemes still disclose confidential information, for example the
access patterns revealed by a query, which can be exploited
by statistical analysis attacks [1], [2].

One approach to address the leakage of SSE schemes is
to store the server-side index and document storage in an
Oblivious Random Access Machine (ORAM) scheme [3]. An
ORAM scheme is protocol that enables a client to store and
fetch a data block from an array structure that can store at most
N data blocks. For each operation, the protocol ensures that
the remote server does not learn neither the client operation nor
the real location of the blocks. However, ORAM schemes have
a few drawbacks. First the client has to maintain a position
map (pmap) that tracks the location of blocks and a stash to
hold temporary blocks. Secondly a remote access has a high
bandwidth blowup, i.e., for every real access to the remote
server, multiple blocks are transferred to the client [4], [5].

The overhead of ORAM schemes can be minimized by using
an isolated execution environment (IEE) [6] co-located with
the encrypted index on the server-side. An IEE is a trusted
hardware technology that enables the execution of arbitrary
(verifiable) computations in a clean slate. The internal state
of an IEE is assumed to be isolated from other co-located
processes, including operating systems and hypervisors. Intel’s
Software Guard Extensions (SGX) [7] is a prominent instance
of an IEE that is widely used to develop novel solutions due
to its ubiquity and accessibility in commodity hardware.

Previous Work. Combining ORAM primitives with trusted
hardware mitigates some overhead of ORAM schemes but it’s
still not sufficient to create efficient private databases. Existing
work proposes new search algorithms and oblivious primitives
that lower even further query latency and the bandwidth used
in the client-server communication. Wang et al. [8] initially
proposed an oblivious data structure (ODS) to search data
inside an ORAM scheme. This construction stored a binary
search tree in an ORAM scheme and was able to search for
a value with O(N · log (N)) bandwidth blowup. Additionally,
this construction minimizes the client side state of ORAM
schemes by storing the position map in the remote server
alongside the search tree.

The idea of ODS has been further used and developed by
different systems. More concretely, Oblix [9] uses an oblivious
search tree to index the keywords of a database and POSUP [10]
uses an oblivious linked list to store the keywords as well as the
documents. In fact, both of these systems improve on the early
work of oblivious data structures (ODS) proposed by Wang et
al. [8]. Besides these previous examples that focused only on
SSE systems, there are also fully-fledged oblivious database
solutions such as Opaque [11] and ObliDB [12]. Nonetheless,
existing systems often use ORAM algorithms as black-boxes
and do not optimize the internal data structures.

Motivation. Our goal is to create a novel oblivious search
scheme tailored-fit for relational databases that has minimal
bandwidth usage and client-side state. To achieve this goal we
dive into ORAM schemes instead of using them as black-boxes
and propose a new search scheme from the ground up that is
optimized for database indexes.

Contributions. We propose a novel oblivious search scheme
inspired by Wang et al. tree-based ODS [8]. The search
scheme improves over existing work in several key aspects.
In comparison to POSUP it does not require auxiliary data
structures to keep a relation between keywords and ORAM
addresses. Furthermore, our scheme searches over keywords
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Fig. 1: Search tree with L levels stored in two different ORAM
constructions: a tree-based ODS as proposed by Wang et al. [8]
and the CODBS scheme presented in this paper.

and reduces the position maps to a small constant. Our system
is also closely related to Oblix [9] tree-based ODS but our
construction has a lower bandwidth blowup. The proposed
scheme is only a subcomponent of our new oblivious relational
database system architecture. We designed this system to
outsource all processing load and storage from the client to
a thin proxy, an Intel SGX IEE co-located with the database
engine. We prove the security of our solution with a classical
game-based proof and measure its performance. We make the
following contributions:
• We propose CODBS, a novel tree-based oblivious search

scheme to store database indexes. This scheme originated
from the observation that an oblivious search on a tree-
based ODS touches every tree level once in the same
order. As such, it is clear that a balanced tree-based ODS
only needs to hide which node is accessed in a level and
not the level accessed. From this insight, we split the
search tree into L smaller ORAM instances, rather than
a large ORAM, where L is the search tree height. This
modification reduces the bandwidth blowup of Wang et al.
tree-based ODS from O(N · log (N)) to O(L2/2), here
N is the number of data blocks (depicted in Figure 1).

• We propose Forest ORAM, an optimized ORAM con-
struction to store database tables. This construction
reduces the bandwidth blowup of OblivStore’s partition
framework [13].

• We present an optimized oblivious database architecture
and implemented a complete solution on top of Post-
greSQL.

• We measure the average system throughput, latency and
resource usage of our solution with YCSB [14]. With the
evaluation we validated the asymptotic improvements of
our construction and shown a ∼ 2× to ∼ 4× performance
improvement over state-of-the-art constructions that lever-
age Path ORAM and oblivious data structures [8], [9].

II. PROBLEM DEFINITION

A. Database System Model

Databases have multiple data structures and query operations
to select, filter and join data. We focus on minimizing the
information disclosed by a fundamental operator of relational
databases, the index scan. By protecting index scans, other

operators can inherit its security guarantees. To understand
an index scan operation, we present a high-level model of a
database architecture in Figure 2a; we consider three main
components: a Database Client, a Query Engine and a Storage
Backend. In this model, the Database Client is a remote
application that connects users to the Query Engine. The
actual query processing is handled by the Query Engine, the
most computationally intensive component. This component
is stateless and stores block-based data structures on the
Storage Backend. The Storage Backend abstracts the underlying
storage and contains two data structures, a Search Index and
a database Table. We consider the index a B+-tree [15] that
maps keywords to table records. The database Table is a linked
list of blocks with each block holding a subset of records.

The execution of an index scan starts with the Database
Client sending a query to the Query Engine (Figure 2a-¶). The
input query is intercepted by the Query Engine which generates
a query plan describing the database tables and indexes that
must be accessed and the order of the accesses. The Query
Engine executes an index scan by searching a tree-based index
(Figure 2a-·). This index search results in a subset of table
pointers that satisfy an input query. For each pointer, the Query
Engine retrieves its matching table record (Figure 2a-¸) and
stores it in a result set. The execution flow between Query
Engine and the Storage Backend is repeated until every relevant
record is accessed and the complete result set is sent to the
Database Client (Figure 2a-¹).

B. Leakage sources

The execution of a database query has two sources of leakage.
The first are the access patterns of the query engine during its
accesses the database storage (Figure 2a-·,¸). Every access
from the Query Engine to the Storage Backend consists of
either reading or writing a data block in one of the databases’
data structures. The sequence of blocks accessed during the
tree transversal define a unique path that identifies a small
subset of data records. The set of possible results is shortened
even further by the identity of the blocks accessed on the
table storage, as each table block contains a limited number of
database tuples. Besides the access patterns, an adversary can
also learn critical information just from the number of accesses
from the table index to the table storage. The information
disclosed by these accesses is captured by the second leakage
considered in our model, the volume leakage. As demonstrated
previously, volume leakage is sufficient to compromise an
encrypted database [16], [17].

Our approach to mitigate these leakage sources is to propose
ORAM-based solution optimized for relational databases that
are capable of fully leveraging a Trusted Proxy deployed at an
intermediate level of trust. As depicted in Figure 2b, in a naive
solution the Trusted Proxy can be thought of as an interactive
oblivious protocol that manages two position-based ORAM
constructions and keeps all of the client side state inside the
protected environment (stash and position map). One of the
ORAM constructions stores the database index, while the other
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Fig. 2: System models of a plaintext database, a naive oblivious solution and an optimized oblivious system.

stores the indexed table. We detail the trust model considered
in the paper and our optimizations to the naive approach next.

C. Trust Model

We consider a semi-honest adversary that can observe all
communications and computation activity, with the exception
of those occurring inside the Database Client and Trusted
Proxy. Concretely, this implies knowledge of: i.) messages
exchanged between client and proxy (Figure 2c-¶,¹); ii.)
proxy interactions with external memory (Figure 2c-s); and
iii.) proxy interactions with the storage (Figure 2c-·,¸).

We assume that client-to-proxy interaction (Figure 2c-
¶,¹) is preceded by a key exchange protocol, to establish
a secure channel. This allows our system to rely on standard
cryptographic techniques to protect the confidentiality of
messages exchanged between client and proxy. Instrumenting
IEE-enabled code in this way is a common requirement,
and has been shown to be achievable securely with minimal
performance overhead [18]. However, secure channels still
disclose the size, direction and number of messages.

An underlying issue of IEE-enabled systems is the infor-
mation disclosed in proxy interactions with external memory
(Figure 2c-s). We assume the trusted hardware only protects
the memory contents [19], [20], but not the access patterns.
Our protocol tackles this issue with constant-time implementa-
tions [9], [21]. The leakage that remains are the access patterns
(Figure 2c-·,¸) in the proxy-to-storage interface. We assume
the adversary has full knowledge of the data blocks accessed
in the external storage.

D. Optimization approach

We now refine the high-level model and detail the system
architecture used in this paper, along with an overview of our
optimizations. Our system is a relational database outsourced
to a third-party infrastructure, as depicted in Figure 2c.
The Trusted Proxy is hosted in an Intel SGX enclave that
supports the creation of genuine IEEs that can be successfully
authenticated with an attestation service. The Trusted Proxy
and the Query Engine are co-located on the same third-party
server, effectively lowering the inter-component latency to a
minimum. We are agnostic with respect to the Storage Backend
but we assume that it provides a standard I/O POSIX interface.
In our model the Query Engine manages client connections,
reroutes input client requests to the Trusted Proxy and provides
an interface to read/write blocks from the database storage. The

Trusted Proxy executes the search queries and keeps an internal
secret state with the secret keys used to encrypt/decrypt blocks
from the database storage.

Using an Intel SGX enclave as a Trusted Proxy is challenging
as enclaves have a limited pool of protected memory available.
Current technology is restricted to 128 MiB but only 93 MiB
can actually be used to store and read application data. We
address this limitation with two optimizations. First, we keep
the enclave as thin as possible by moving the stash and
position maps of ORAM schemes to the Storage Backend.
Secondly, we do not simple use ORAM schemes as black-
boxes and instead use CODBS, our novel oblivious search
scheme which has multiple composable ORAMs that reduce
the client (here proxy-side) storage to a constant factor and
enables the protected proxy to function with a small local
memory, while guaranteeing leakage-free storage access.

III. DEFINITIONS

In this section we present the notation and security definitions
used throughout this work. The security parameter is denoted
by λ in unary (i.e., 1λ). A negligible function in the security
parameter is denoted as negl(λ). We consider an adversary
A and a simulator S to be polynomial time algorithms. Our
constructions rely on notions of a variable-length-input pseudo-
random function (PRF) and a symmetric encryption schemes
secure against chosen plaintext attacks (IND-CPA) [22]. The
secret keys are uniformly sampled from {0, 1}λ.

Databases. We denote a plaintext database as a set
of data records indexed by a search key DB =
{(key1, data1) . . . (keyn, datan)}. We abstract the search keys
as keywords from the set of all finite strings W ⊆ {0, 1}∗ and
the data records datai ∈ {0, 1}B as binary data blocks of fixed
length B. A database query τ : W → {0, 1} is a predicate
that consists of keywords in the domain W that satisfies a
boolean formula. Given an input query τ a database search
DB(τ) = {datai : τ(keyi) = 1} returns all data records that
satisfy the query.

The database keys and data records are stored in a pair of
data structures where I denotes a tree-based index that stores
the database search keys and T denotes a Table Heap with the
data records. The Table Heap is defined as a collection of N
table blocks T = {(a1, data1), . . . , (an, datan)} associated
with a unique address ai ∈ Z. The tree-based index I abstracts
the search tree indexes of databases as a collection of L levels,
each one storing multiple tree nodes. A tree node in a tree



level is defined by a list of tuples (key, a) where key is a
search key and a is an address to either another node in a tree
level or to a table block in a Table Heap. We denote access
to the data structures with array notation where a Table Heap
access returns a table block data ← T [a] and a Table Index
access at level l and address a returns the list of pointers
(key, a)← I[l][a].

A. Oblivious Index Scan

Using the previous notation, the database operations are
captured by the Oblivious Index Scan (OIS) scheme, which is
realized by our main construction. This primitive uses ORAM
schemes as building blocks to store the database data structure
and hide the access patterns of search queries. Intuitively,
an OIS scheme starts with an empty data storage, which
the Database Client fills by outsourcing a plaintext database
structure via the Trusted Proxy with an initialization algorithm.
After this initial step, the Database Client sends queries to the
database engine to retrieve the database records.

Definition 1. (Oblivious Index Scan) An oblivious index scan
scheme OIS consists of the following two algorithms:
• Init(1λ, I , T , prms)→(st, Ĩ , T̃ ): Initialization algorithm

that takes as input a Table Index I, a Table Heap T
and the public database parameters prms: (number of
blocks N , tree-based index height L, and tree fanout d).
The algorithm returns an internal state st, an oblivious
search tree Ĩ and an oblivious table T̃ . The oblivious data
structures preserve the indexing relation between the input
data structures. The internal state is kept securely within
the Trusted Proxy and it contains the internal state of
multiple ORAMs, a secret key for a symmetric encryption
scheme and a secret key of a PRF. The oblivious data
structures are stored in the Storage Backend.

• Search(st, Ĩ , T̃ , τ )→(st′, Ĩ ′, T̃ ′, data): Search algorithm
that takes as input the current state st, an oblivious Table
Index Ĩ , a oblivious Table Heap T̃ and an input query τ .
The algorithm filters the records that satisfy the query with
an Oblivious Index Scan and returns an updated state st′,
a shuffled oblivious Table Index Ĩ ′, a permuted oblivious
Table Heap T̃ ′ and the resulting data record.

B. Oblivious RAM

We follow the classical definition of position-based
ORAMs [4], [8] where a client (e.g.: local machine) remotely
accesses data blocks in a server (e.g.: block storage) but modify
it in two ways. First, instead of providing a single Access
method that reads data from the server, shuffles the blocks and
flushes them back, we divide these processes in two distinct
functions. Secondly, we explicitly require an external position
map δ to be passed as input for every oblivious access. Similar
to internal position maps, the external position map keeps track
of the current location of blocks. However, the external position
map also determines the next location where a block must be
stored after an oblivious access. As such, the responsibility of
correctly book-keeping the location of the blocks is shifted to
the ORAM client.

Definition 2. (Oblivious RAM) An oblivious RAM scheme
consists of the following three algorithms:
• Build(N )→(st, D̃): Initialization algorithm that takes as

input a maximum number of blocks N and outputs an
internal state st and an initialized data structure D̃.

• Read((st, δ), D̃, a)→(st′, data): Access operation that
takes as input an internal ORAM state st, an external
position map δ, the external data structure D̃ and a block
address a. It returns an updated state st′ and the external
block data. This operation does not evict the ORAM
internal state nor modifies the external data structure.

• Write((st, δ), D̃, a, data)→(st′, D̃′): Eviction operation
that takes as input an internal state st, an external pmap δ,
a data structure D̃, a block address a and the new block
data. It evicts stashed blocks, writes data to offset a and
returns an updated state st′ and data structure D̃′.

IV. OBLIVIOUS CASCADING SCANS

Overview. In this section we present our Cascading Oblivi-
ous Database Search (CODBS) construction. Intuitively, the
scheme captures the interaction between the Trusted Proxy
and the Storage Backend. The client starts by issuing an
initialization query to the Trusted Proxy in order to outsource
a local plaintext Table Heap and a plaintext Table Index to
a sequence of L + 1 levels of independent ORAMs. Our
construction stores the database blocks across each level by
following the pattern that emerges naturally from the tree-based
indexes in databases such as B+-trees. As such, every node
of a Table Index at level l is stored on the ORAM level l.
The last ORAM level is reserved for the table blocks. The
underlying ORAMs are devoid of an internal pmap and instead
we explicitly provide a pmap for every ORAM access. In fact,
the locations of the blocks B in an ORAM at level l + 1 are
stored in its parent node A at level l. As defined in Section III,
each plaintext tree node has a list of tree points (key, a) which
is enhanced during the initialization process with an additional
counter (key, a, ctr). These counters keep the access to the
ORAM levels correct and secure.

After the initialization, the client proceeds to issue search
queries to the Trusted Proxy. With the multiple ORAM levels,
a query search consists of cascading from level to level and
choosing the next node to access at each step. In the last level
the Trusted Proxy returns to the client a single Table Heap
block that satisfies the input query. To gain an intuition on
how search moves from level to level, consider the following
example of an access to a block A at level l. Before moving
to a level l + 1, the scheme seeks in the block A a pointer
(key, a, ctr) to a child node that satisfies its query. If a match
is found, the location of the next block to access is calculated
with a PRF by providing as input the ORAM level l + 1, the
address a and the counter ctr. However, before moving to the
next level l+ 1, the counter of the matching pointer is updated
and block A is shuffled back in level l to a new position.
This combination of independent ORAM levels with PRFs
is a significant improvement over state-of-the-art tree-based
ODS [8] that can only flush the tree nodes after iterating over



the entire search tree. With CODBS, a tree search only needs
to do a single pass over the entire tree and the tree nodes can
be flushed to the ORAM immediately after being fetched.

CODBS in detail. Given a PRF F : {0, 1}λ × {0, 1}∗ →
{0, 1}λ, an IND-CPA symmetric encryption scheme Θ =
(KGen,Enc,Dec) and a position-based ORAM scheme Φ with
an external pmap, CODBS is defined by the initialization
Algorithm 1 and the search Algorithm 2. In this section we
abstract the ORAM implementation, but we later present an
optimized construction in Section IV-B. In CODBS the location
of a block is provided by location tokens, i.e.: two outputs
sampled from a PRF. The block location is defined by a tuple
(F (m), F (m′)) containing a token for its current location and
a token for its eviction location. These tokens are used by the
ORAM scheme to move a block from its original address to a
new address after an oblivious access. For instance, assuming
the underlying ORAM scheme is a construction similar to Path
ORAM [4] the tokens are used to compute uniformly random
leaves in the server’s binary tree.

Algorithm 1: CODBS Init protocol

1 Function Init(1λ, I, T , N , L, d)
2 skF ← F.KGen(1λ);skE ← Θ.KGen(1λ)

3 (stĨ , Ĩ) ← InitSearchTree(I, L, d, skF , skE)

4 (stT̃ , T̃ ) ← Φ.Build(N )
5 for a ∈ {0, . . . , N} do
6 δ ← (F (skF , L+ 1||a||0), F (skF , L+ 1||a||1))
7 c← Θ.Enc(skE , T [a])

8 (stT̃ , ) ← Φ.Read((stT̃ , δ), T̃ , a)
9 (stT̃ , T̃ ) ← Φ.Write((stT̃ , δ), T̃ , a, c)

10 return ((skF , skE , 1, stT̃ , stĨ), (Ĩ, T̃ ))

11 Function InitSearchTree(I, L, d, skF , skE)
12 Ĩ ← []; stĨ ← []
13 for l ∈ {0, 1, . . . , L} do
14 (stĨl , Ĩl) ← Φ.Build(dl)
15 for a ∈ {0, 1, . . . , dl} do
16 data ← I[l][a]
17 data’ ← []
18 for i ∈ {0,1, . . . , |data| } do
19 (key, a′) ← data[i]
20 data′[i] ← (key, a′, 1)

21 δ ← (F (skF , l||a||0), F (skF , l||a||1))
22 c← Θ.Enc(skE , data

′)

23 (stĨl , ) ← Φ.Read((stĨl , δ), Ĩl, a)
24 (stĨl , Ĩl) ← Φ.Write((stĨl ,δ), Ĩl, a, c)
25 Ĩ[l] ← Ĩl; stĨ [l] ← stĨl
26 return (Ĩ, stĨ)

Initialization algorithm. The Init algorithm outsources a
plaintext database to a pair of oblivious data structures stored
in an untrusted server. The goal of this algorithm is to initialize
the Trusted Proxy internal state and ensure the database is
ready to process client queries. The algorithm starts with the

generation of secret keys (line 2) and then proceeds to create
two additional oblivious structures, an oblivious search tree
Ĩ (line 3) and an oblivious table T̃ (line 4-9). The oblivious
search tree Ĩ is the result of the algorithm InitSearchTree. This
tree initialization algorithm traverses the plaintext database tree
level by level, creates an ORAM for each level l with capacity
for dl blocks and stores the blocks of a tree level in the
respective ORAM. The resulting data structure consists of L
ORAMs that keep an identical structure to an input tree-based
index. Each tree level is assigned to a single ORAM that stores
all the of the level’s nodes. Before a tree node is written to an
ORAM, its internal structure is updated and a unique access
counter is added for every pair of (key, ptr). It’s important to
note that the pointer ptr in a node at level i points to a node
offset a at level i + 1. As blocks are written to an ORAM
for the first time, the cryptographic token used by the Φ.Read
function starts with a counter set to 0 and the eviction token
increments the counter by a single unit. At the end of the
index initialization function every parent node can compute
the location of its children.

After the index initialization, the Init function creates
an additional level to store the Table Heap blocks. The
initialization process starts with the allocation of an oblivious
table T̃ (line 4) filled with N dummy blocks. Afterwards,
the algorithm scans the Table Heap block by block (line 5)
and generates two cryptographic tokens for each block (line
6). The initial location of a block is computed by providing
F with a unique message composed by the total number of
levels L + 1, the block address a and an initial counter set
to 0 (line 6). The eviction token is computed with a similar
message, but the counter is incremented by 1. The syntax of
the message ensures that each block’s location i is independent
from previous locations and every other block. During the table
scan, every block a is encrypted and stored in the oblivious
data structure at a uniform random location defined by its
location tokens δ (line 7-9). The function returns the internal
state.

Search algorithm. We now describe CODBS’ oblivious
search algorithm. During this first look at the algorithm we are
not concerned with volume leakage and assume that for every
input query τ the protocol returns a single Table Heap block.
This assumption implies that every indexed record is unique
and there are no range queries. We address this limitation in
Section IV-A. With this simplification the algorithm cascades
from the first ORAM level to the last, selecting a single node
at each level. In detail, a query consists of the following steps:

1.) Oblivious tree search. (line 4-13): In this step, the
algorithm traverses the L levels of the tree-based index (line
3), fetching a node from each level until it reaches a tree leaf.
At every level of the tree scan, the algorithm accesses the tree
node at address a stored on an oblivious location defined by
the counter ctr. These variables are initially set to the tree root
(line 2) and similarly to the initialization algorithm, the current
block location tokens are calculated with a PRF (line 5). The
accessed tree node (line 8) is processed by the Next function
which selects a new child node address a′ and a counter ctr′



Algorithm 2: CODBS Search protocol

1 Function Search(st, Ĩ, T̃ , τ)
2 (skF , skE , ctrr, stT̃ , stĨ) ← st; a ← 0; ctr ← ctrr

3 for l ∈ {0, 1, . . . , L} do
4 stĨl ← stĨ [l]; Ĩl ← Ĩ[l]
5 δ ← (F(skF , l||a||ctr), F(skF , l||a||ctr + 1))
6 (st′Ĩl , c) ← Φ.Read((stĨl , δ), Ĩl, a)
7 data← Θ.Dec(skE , c)
8 (data′, a′, ctr′) ← Next(data, τ )
9 c′ ← Θ.Enc(skE , data

′)

10 (st′′Ĩl , Ĩ
′
l ) ← Φ.Write((st′Ĩl , δ), Ĩl, a, c’)

11 a ← a′; ctr ← ctr′; stĨ [l] ← st′′Ĩl
; Ĩ[l] ← Ĩ ′l

12 δ ← (F(skF , L+ 1||a||ctr),
F(skF , L+ 1||a||ctr + 1))

13 (st′T̃ , c) ← Φ.Read((stT̃ , δ), T̃ , a)
14 data← Θ.Dec(skE , c)
15 c′ ← Θ.Enc(skE , data)

16 (st′′T̃ , T̃ ′) ← Φ.Write((st′T̃ , δ), T̃ , a, c’)
17 st′ ← (skF , skE , ctrr+1, st′′T̃ , stĨ)
18 return (st′, Ĩ, T̃ ′, data)
1 Function Next(data, τ)
2 for i ∈ {0, 1, . . . , |data|} do
3 (key, a, c) ← data[i]
4 if SelectChild(key, τ ) then
5 data[i] ← (key, a, c+ 1)
6 return (data, a, c)

to be accessed in the next tree level.
2.) Node selection. (Function Next): This operation selects

a single tree child node address from an input parent node.
A tree node is a set of tuples (key, a′, c′) where each tuple
consists of a node address a′, a location counter c′ and a
predicate key. We scan over every tuple (line 3) and check if
a tuple key matches an input query τ (line 4). As the choice
of which child nodes satisfies an input query depends on the
underlying index we abstract this process with the function
SelectChild that takes as input a query τ and the current child
key. This function returns a boolean result bit b that is set
to true if the key satisfies the query. When a child node is
found the function increments the counter of the target child
node (line 6). This update is made ahead of time, before the
child node is accessed, to ensure that the parent node keeps
a consistent pointer before it’s shuffled back to the ORAM
external storage. The function ends by returning the updated
accessed node as well as the current location of the next node,
defined by the address a and the old counter value c.

3.) Table heap access. (Line 14-19): Finally, after scanning
the search tree and reaching a leaf node, the algorithm obtains
a single Table Heap block pointer. With this information, the
current location of the block is calculated with a PRF function
(line 6) and the block is accessed and evicted (line 13-14). At
the end of the algorithm, the Trusted Proxy internal state is

updated (line 15) and the resulting block returned to the client.
Multi-User setting. Our protocol mainly considers a single-

user setting, but can be extended to the multi-user setting. We
can follow an approach similar to POSUP [10] and store an
access control list (ACL) on the Trusted Proxy. This meta-
data is created by the data owner and outsourced to the remote
server during the database initialization process. Given an input
query, the Trusted Proxy authenticates the request using the
user credentials and validates the user’s permissions. If the
authentication is successful, then the Trusted Proxy searches
the database obliviously, as defined in Algorithm 2.

A. Oblivious Query Stream

Until this point, the Search algorithm was a 1-to-1 function
that returned a single table block for every input query.
However, the database must support range queries and equality
queries that return multiple results. We address this limitation
with the insight that any query with multiple resulting records
can be unfolded into a sequence of multiple queries with
a single result. Additionally, queries can be composed one
after the other to obtain an oblivious stream of client requests
and database results. Next, we provide a concise description
of our solution assuming that the search keys are defined
in a continuous domain fully known to the client. This
assumption matches existing work in state-of-the-art oblivious
data structures [8] and can easily be dropped at the cost of
additional server-side bookkeeping.

With this observation, the CODBS client is implemented
as an algorithm that maintains a constant rate r of re-
quests/responses with the Trusted Proxy. The algorithm starts
by opening an authenticated channel with the Trusted Proxy and
proceeds to send queries on a loop at a rate r. The first query
starts by searching for the first element in a subrange of the
search key domain. The request is processed by Trusted Proxy
which scans every ORAM level with the Search algorithm.
The resulting database block is stashed by the client which
keeps sending queries with the consecutive elements in the key
domain. A search query ends when the Trusted Proxy returns
a dummy element that does not satisfy the client query. This
query stream is crucial to hide one of the main sources of
leakage of search queries over ORAMs, the volume leakage.
To address this leakage the query stream remains active by the
client, even if there are no new queries to search. In this case,
a dummy query is sent to the Trusted Proxy and its result is
ignored by the client. With this approach, the volume leakage
of the system no longer depends on the size of the result set
of a query but rather on the rate of requests made to the proxy.
This rate is public information that can be adjusted depending
on the workload. Regardless of the request rate, the access
patterns no longer depend on private data.

B. Forest ORAM

We now instantiate the underlying ORAM construction used
for each level. A major concern that arises from storing the
Table Heap in an ORAM is the bandwidth blowup — number
of blocks transferred per access — of an oblivious access.



Even though Table Index size is proportional to the number
of blocks in a Table Heap, the cost of a database search is
dominated by the access to the last level. In our experimental
evaluation we verified that there are 50 times more blocks in
a Table Heap than in a Table Index for a small dataset and
this difference only increases as the dataset grows. To address
this issue, we propose Forest ORAM a simple optimization to
Path ORAM that scales with the number of blocks.

Forest ORAM leverage OblivStore’s partition framework [23]
to lower the bandwidth blowup of Path ORAM. Conceptually,
the OblivStore framework splits a single ORAM into multiple
independent partitions. Each partition stores only a subset
of data blocks and a single oblivious access fetches blocks
from one partition. After an access, blocks are shuffled to
a new partition to hide the access patterns. Each partition
also has an individual client side stash that temporarily stores
blocks until they are evicted in background process. The
classic OblivStore construction instantiates each partition as
an hierarchical ORAM with O(log (N)) bandwidth blowup.
In Forest ORAM, we swap the hierarchical ORAMS with
Path ORAM constructions. As such, instead of storing N
blocks in a single Path ORAM, blocks are distributed among P
partitions with height L = log (N)− log (P ) which results in a
bandwidth blowup of O(log (N)− log (P )) and a O(log (P ))
upper bounded stash. We provide a detailed description of the
algorithm in the extended version of our paper [24].

C. Security Analysis

CODBS is secure as stated in Theorem 1 and the proof is
presented in our extended version of this paper [24].

Theorem 1. The CODBS construction defined by Algorithm 1
and Algorithm 2 is a secure Oblivious Index Scan according
to Definition 1 if Φ is an Oblivious RAM scheme, Θ is an
IND-CPA symmetric encryption scheme and F is a PRF.

Proof sketch. The security analysis of CODBS hinges on
the composition of multiple black-box ORAMs. Intuitively,
every query processed by the Trusted Proxy consists of a
sequence of L requests to independent ORAMs. From the
adversary perspective, the accesses to each ORAM generates
an arbitrary sequence of storage accesses to encrypted data
blocks. Furthermore, the sequence of requests to each ORAM
is deterministic and independent from the input query. As such,
the adversary observes a sequence of arbitrary accesses to the
external storage and does not learn any additional information.

We prove our security intuition with five indistinguishably
games, from a real world to an ideal world. The first two
hops consist of syntactic changes to the real-world, adding
ideal structures that simplify the next hops in the proof. In the
third hop we require position-based ORAMs accesses to be
indistinguishable from random accesses, by replacing the PRFs
used to generate location tokens by a true random function. The
fourth hop captures the intuition that our scheme is secure as
long as blocks are encrypted with IND-CPA schemes. Finally,
the last game shows that the ORAM accesses to every level are
independent of the input query by replacing the input address

of an ORAM level with a dummy address. Overall, the security
games prove that an adversary cannot distinguish between the
real world and ideal world by using the security definition of
PRFs, IND-CPA and ORAM.

V. EXPERIMENTAL EVALUATION

We implemented CODBS as a PostgreSQL server-side
extension that supports equality and range queries. We build
upon on a widely used open-source database management
systems to ensure that our system design choices are based on
realistic assumptions and the evaluation results are comparable
to industry standard databases. The complete solution has
roughly 12K lines of C code and is composed by an ORAM
library, a Trusted Proxy engine and a database wrapper.

A. System Implementation

Our system currently supports two ORAM constructions:
Path ORAM and Forest ORAM. We implemented both con-
structions in a general-purpose ORAM library, open-source for
any application that needs to hide its access patterns [25].

We implemented CODBS as the database component that
replaces the Trusted Proxy and provides an input API similar
to the definition in Section III-A. Additionally, this component
has an output API to access the external database storage. The
component is deployed within an Intel SGX enclave collocated
with the database. Currently, the extension supports a B+-tree
as the index data structure. We leverage the LibSodium [26]
library v1.0.5 to instantiate the cryptographic primitives as
it provides constant-time implementations. Concretely, we
instantiate the PRF F as a SHA256-HMAC and Θ encryption
scheme as an AES block cipher with CBC mode. The Trusted
Proxy is connected to the database with a wrapper component
implemented as Foreign Data Wrapper (FDW), a PostgreSQL
module that enables developers to extend the database server
without modifying the core source code.

B. Methodology

We measure the performance of our system to answer
the following questions: 1) How does CODBS scale with
increasingly larger datasets; 2) What is the overhead in
comparison to a plaintext database for different types of queries;
3) How does size of the result set of a range query impact
the overall system the database performance. In the evaluation
we compare our construction to a system Baseline which
consists of database that stores the Table Index and Table Heap
in a single Path ORAM construction. For a fair comparison,
the Baseline also uses an oblivious query stream.

Micro & Macro Settings. We divided our system evaluation
in two distinct settings, a micro setting and a macro setting.
Both settings use a synthetic dataset and workload. The
micro setting measures the performance of Forest ORAM
construction and Path ORAM constructions isolated from the
CODBS scheme and the PostgreSQL engine. In this setting
each construction read/writes blocks of B = 8 KiB from/to
the main memory at randomly sampled positions. The data
blocks written to memory are also sampled from a uniform



0

50

100

150

200

10 12 14 16 10 12 14 16A
ve

ra
ge

L
at

en
cy

(µ
s)

Number of blocks (base 2)

ForestORAM PathORAM

UnboundedStashOblivious Stash

Fig. 3: Forest ORAM and Path ORAM comparison. X-axis
measures number of blocks and errors bars the 95% CI.

0

10

20

30

4 6 8 10 12 14 16

0
100
200
300
400

10 15 20 25 30 35 40

A
vr

g.
L

at
en

cy
(m

s)

Number of table blocks (base 2)

Workload A

A
vr

g.
L

at
en

cy
(m

s)

Number of results
CODBS Baseline

Workload B

Fig. 4: Avg. latency of YCSB workloads. Workload A X-axis
measures the numbers of blocks. Workload B X-axis measures
a query resulting records.

distribution {0, 1}B . In the macro setting we use the YCSB
benchmark v0.18 [14]. In the benchmark the database has
a single table with two columns. The first column Key is
indexed and stores unique keywords. The second column stores
JSON objects containing randomly sampled data. Each table
record has the same size as a database block 8 KiB. We
configured the benchmark to generate two workloads over the
indexed column: Workload A) Equality queries that search
for keywords sampled from a uniform random distribution;
Workload B) Range queries that start on a randomly sampled
keyword and search for at most k values where k is uniformly
sampled from [1..X]. The first benchmark is designed with
a one-to-one match between a database record and database
table block to enable a linear analysis of the expected database
performance as the table size increases.

For both benchmarks we performed 5 runs for each combina-
tion of deployment, configuration, workload and database size.
The number of runs is the maximum necessary to calculate
an accurate confidence intervals (CI) [27] with the measured
standard deviation. Each run lasted for 40 minutes with a
10-minute warm up period and a 2-minute cool down period
between each run. Furthermore, we ensure that each run is an
independent observation by clearing all persistent data.

Collected Metrics. In the micro benchmark we measure the
mean and the percentile latencies of a read and write operations
for every run. With the YCSB benchmark we collect the mean
and percentile latencies as well as the system throughput for
every run. The samples mean are calculated within an 95%
CI with the Student’s t-distribution [27]. We collected CPU,
memory and disk usage of each system.

Experimental Setup. The system was deployed in a private
infrastructure. Each computational node had an Intel Core i3-
7100 CPU with a clock rate of 3.90 GHz and 2 physical cores
in hyper-threading. The main memory was a 16 GiB DDR3
RAM and the solid-state storage a Samsung PM981 NVME
with 250 GB. The machines had Intel SGX SDK v2.0 installed.
Nodes were connected by a 10 GiB network switch.

C. Micro Benchmark

Figure 3 depicts the results of the micro benchmark. The
workload starts with an empty oblivious data structure and
measures the latency of an oblivious access request, either a
read or a write. The benchmark measures the average latency of
a request for Forest ORAM and Path ORAM. It also measures
the latency of both constructions with two distinct stashes,
an unbounded stash where a stash access stops as soon as it
finds an element and a double-oblivious stash with fixed size
upper bounded at log (N). The number of blocks stored on
the ORAMs increases from 210(65 MiB) to 216 (2 GiB).

As can be observed, the performance difference between
both stashes is almost non-existent. This is expected as position-
based ORAM constructions are designed to utilize as much as
possible the stash. In more detail, on an oblivious stash a Forest
ORAM request takes on average 27 µs for the smallest data set
while in the largest takes 59 µs. The Path ORAM has a higher
latency, with 99 µs for an oblivious request in the smallest
data set and 190 µs for the largest data set. This difference
represents at least a ∼ 2.6× speedup. In the unbounded stash,
the most significant difference is noticed on Forest ORAM
in the 214 dataset where there is a an average performance
decrease of 2.5%. As the dataset increases, the performance
of both systems degrades at a similar rate with Forest ORAM
latency increasing by ∼ 15% and Path ORAM by ∼ 17%.
At the 90th percentile, both systems performances degrade
considerably, with Forest ORAM latency increasing at most
by ∼ 17% and Path ORAM by 7%. Even with these outliers
Forest ORAM latency is at least ∼ 1.6× lower than Path
ORAM.

This benchmark shows that the asymptotic difference be-
tween Forest ORAM and Path ORAM has a practical impact.
The average latency as well as the 90th and 99.9th percentiles
are smaller than Path ORAM. This difference is attributed to
the partition framework which scales the number of partitions
and the tree height of each individual partition as the data
set increases. In fact, the number of partitions depends on
parameter that can be adjusted to increase even further the
performance of Forest ORAM at the cost of additional client-
side storage. The only unexpected result is the 99.9th percentile
maximum performance degradation of ∼ 120% when compared
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to Path ORAM. However, this difference only occurs in the
smallest data sizes and stabilizes in both protocols at ∼ 40%.

D. Macro Benchmark

We now present the performance of CODBS and compare it
to Baseline. The Baseline solution uses a Path ORAM
construction to store the database data and does not divide
the Table Index in multiple ORAM levels. Instead, the Table
Index is stored in a single ORAM and accessed as an oblivious
data structure similar to the one used in Oblix and proposed
by Wang et. al [8], [9]. However, it still calculates the block
addresses using a PRF to keep both systems comparable. With
this approach, the Baseline provides clear understanding
on the practical performance improvements of our cascade
solution. Additionally, we also contrast both solutions to a
plaintext PostgreSQL database. The evaluation consists on
measuring the throughput and latency of increasingly larger
database databases until a saturation point is reached and the
systems cannot provide a practical throughput (> 1 op/s).

Figure 4 presents the macro results. In workload A, the
database size starts with 24 Table Heap records and a Table
Index with a single tree level (a total of 47 MiB) and is increased
until 216 Table Heap blocks with a Table Index of two levels
(a total 2.1 GiB). Across this range, CODBS maintains an
average latency below 10 ms which corresponds to 886 ops/s
for the smallest data set and 158 ops/s for the largest. The
average maximum throughput of every run in Baseline is
264 ops/s (smallest dataset) and the average latency surpasses
CODBS at just 28 Table Heap records. Its highest average
latency is 25 ms, corresponding to a throughput of 40 ops/s,
meaning that CODBS has approximately a 4× speedup. There
is a slight performance degradation of both systems on the 99th
percentile in the largest dataset. CODBS has a 30% latency
increase with an average latency of 13.34 ± 1.74 ms and the
Baseline has an increase of 17% with an average latency
of 29.33 ± 12.95 ms. In contrast to both solutions, a plaintext
PostgreSQL has on average ∼ 7663 ops/s.

Workload B uses the dataset with 216 Table Heap records
to measure the latency of range scans, more specifically where
clauses with a greater than operator. The number of resulting
records ranges from 10 to 40, with larger ranges becoming
impractical. Similar to workload A, the Baseline system has
the highest average latency of 324 ms and a throughput of 3
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ops/s. CODBS has a ∼ 3× speedup with the lowest throughput
of 10 ops/s and an average latency of 96 ms.

Figure 5 provides an analysis of the multiple query process-
ing stages in both systems. It breakdowns the execution between
the database data structures, Table Index (I-File, I-Stash) and
the Table Heap (T-File, T-Stash) and PRF computation. Each
structure is divided even further by the time spent in the ORAM
stash and external access to store (I-File, T-File). The CODBS
breakdown also accounts for the time spend at each index level
(L2 and L1). The overhead of block encryption is measured
within the accesses to the external files. As depicted, CODBS
spends most of the time (60%) accessing the Table Heap, 8%
accessing the first Table Index level and 28% accessing the
second Table Index level and the remaining time calculating the
PRFs. In contrast, the Baseline spends more time accessing
the external file and the system throughput is dominated by
the disk IO. This claim is further supported by Figure 6 which
presents the average write requests to the external storage
grouped in intervals of 10 seconds. As can be observed, the
Baseline has a sustained rate 10 to 40 MiB writes per
second while CODBS is constantly below 2 MiB/s.

E. Discussion

Across every benchmark and workload, CODBS displays
an overall performance that exceeds that of the baseline
system. These speedups are the result of combining the
cascade approach with the Forest ORAM construction. This
combination results in an asymptotic decrease of log (log (N))
bandwidth blowup compared to state-of-the-art oblivious data
structures as shown in Section V-C. This seemingly small
difference has a significant impact.

In the YCSB benchmark on workload A with a tree height
of just two levels there is a 4× speedup instead of just a
2.6× speedup as might otherwise be expected from the micro
benchmarks. This difference is the result of spending less
time accessing the storage and a 95% lower number of disk
writes on average than the baseline. Regarding workload
B the performance gains of CODBS in comparison to xthe
baseline are less significant. With just a 2× speedup, the
main bottleneck in this workload seems to be the size of
the data exchanged in the oblivious query stream. Across the



different result set size, CODBS has on average a write rate of
∼ 1.3 MiB/s and the baseline writes at most ∼ 347 KiB/s.

VI. RELATED WORK

Position-based ORAMs. Position-based ORAMs were first
proposed by Shi et al. [28] to improve the lower bounds of
classic constructions [3], [29]. The first solutions consisted of a
framework that stores data blocks in a binary tree. However, the
framework requires an eviction process that flushes the nodes
down to their corresponding tree paths and has a bandwidth
blowup of O(log3N). Newer constructions based on this
framework have mostly improved the eviction process [30]–[32]
to lower the bandwidth blowup. Currently, Path ORAM is the
most efficient tree-based solution with a blowup of O(2·logN).
A new class of algorithms surpass the ORAM lower bound in
the ”balls and bins” model by assuming computation on the
server side. The computation can be homomorphic encryption
schemes that have a significant overhead [33], [34] or, as
proposed in Burst ORAM [35] and Circuit ORAM [32], be a
simple compression with an XOR operator.

Oblivious Data Structures. Wang et al. [8] proposed the
first work with general-purpose oblivious data structures. One
of the main contributions is a pointer-based technique that
removes the need for a recursive position map on Path ORAM.
With this optimization, a search on an oblivious search tree
went from O(log2N) blowup to a O(logN) blowup. Our
work lowers even further the blowup of an oblivious search
tree. Furthermore, our approach to store the position map in the
oblivious search tree is non-interactive which enables accessed
node to be shuffled after every accessed.

Volume leakage As stated by Grubbs et al. [16] and shown
by novel research [17], [36], [37], hiding the access patterns
of a database is not enough. The volume leakage of database
queries must also be addressed. Kallaris et al. [36] was the
first to create a formal model of encrypted database that focus
on volume leakage. New attacks have been proposed [16].

VII. CONCLUSION

Our construction provides an efficient solution for secure
database searches on tree-based indexes and heap table accesses
with minimal bandwidth blowup, with a detailed theoretical
analysis on the system security and experimental results
pointing towards practical feasibility. We implemented the
proposed construction as well as a novel construction Forest
ORAM and measured its performance with industry-standard
benchmarks. Comparatively to the state-of-the-art constructions,
our solution is 1.2× to 4× faster.
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