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A B S T R A C T

High-performance computing relies on performance-oriented infrastructures with access to powerful computing
resources to complete tasks that contribute to solve complex problems in society. The intensive use of
resources and the increase in service demand due to emerging fields of science, combined with the exascale
paradigm, climate change concerns, and rising energy costs, ultimately means that the decarbonization of
these centers is key to improve their environmental and financial performance. Therefore, a review on the
main opportunities and challenges for the decarbonization of high-performance computing centers is essential
to help decision-makers, operators and users contribute to a more sustainable computing ecosystem. It was
found that state-of-the-art supercomputers are growing in computing power, but are combining different
measures to meet sustainability concerns, namely going beyond energy efficiency measures and evolving
simultaneously in terms of energy and information technology infrastructure. It was also shown that policy
and multiple entities are now targeting specifically HPC, and that identifying synergies with the energy sector
can reveal new revenue streams, but also enable a smoother integration of these centers in energy systems.
Computing-intensive users can continue to pursue their scientific research, but participating more actively in
the decarbonization process, in cooperation with computing service providers. Overall, many opportunities,
but also challenges, were identified, to decrease carbon emissions in a sector mostly concerned with improving
hardware performance.
1. Introduction

High-performance computing (HPC) can be defined as the ‘‘field
of endeavor that relates to all facets of technology, methodology and
application associated with achieving the greatest computing capability
possible at any point in time and technology’’ [1]. HPC relies on
performance-oriented infrastructures with access to powerful comput-
ing resources to complete tasks that contribute to solving complex
problems in society.

HPC systems are composed by compute and storage resources inter-
connected by a high-speed network. These systems may have thousands
of compute nodes that are leveraged by its users to execute complex
applications, known as jobs. The access to such resources is mediated
by a job scheduler, which allocates compute nodes to jobs on a queue
based on the user-defined conditions and availability of the resources
in the system. The scheduler is also responsible for monitoring the
jobs and controlling the contention to shared resources by managing
a queue of pending work. The power drawn from the intensive use
of computing, overhead equipment, and cooling resources makes HPC
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systems large-scale electricity consumers and contributors to climate
change [2].

The demand for HPC is growing in both the public and private
sectors. According to an analysis from MarketsandMarkets, the mar-
ket for HPC is likely to grow from USD 36 billion in 2022 to USD
49.9 billion by 2027 [3]. The HPC industry, alongside similar ones
such as traditional data centers, is largely driven by the increasing
need for computing power, networking, and storage [4] of emerg-
ing fields like Artificial Intelligence (AI), Internet of Things (IoT),
cryptocurrencies, 5G networks, and plays a vital role in smart-city
infrastructures [5]. These fields significantly raised the demand for the
Information and Communication Technology (ICT) industry [6], which
is forced to scale and adapt, but also to become increasingly aware of
its sustainability [7].

Additionally, HPC moving from petascale to exascale (systems capa-
ble of at least one exaflop) creates new challenges [8], such as a large
amount of energy consumption, with operational costs getting closer to
parity with capital costs. The TOP500 list [9] indicates that the current
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Abbreviations

AI Artificial Intelligence.
ANSI American National Standards Institute.
ASHRAE American Society of Heating, Refrigerating

and Air-Conditioning Engineers.
DVFS Dynamic Voltage and Frequency Scaling.
EDP Energy Delay Product.
ETP4HPC European Technology Platform for High

Performance Computing.
HPC High-performance computing.
HPCaaS HPC as a service.
HPCG High Performance Conjugate Gradients.
HPL High-Performance Linpack.
ICT Information and Communication Technol-

ogy.
IoT Internet of Things.
ISO International Organization for Standardiza-

tion.
IT Information Technology.
KPI Key Performance Indicator.
LEED Leadership in Energy and Environmental

Design.
LUMI Large Unified Modern Infrastructure.
ODA Operational data analytics.
PUE Power Usage Effectiveness.
RAPL Running Average Power Limit.
RES Renewable Energy Sources.
RISC Reduced Instruction Set Computer.
SLA Service Level Agreement.
TACC Texas Advanced Computing Center.
TES Thermal energy storage.
UPS Uninterruptible Power Supply.

fastest supercomputer, Frontier, the first exascale supercomputer with
a performance of 1194 PFlops/s, consumes 22.7 MW of power while
ranking 6th in the GREEN500 list [10] with a power efficiency of 52.2
GFlops/Watt. Further advances are needed to achieve the exascale HPC
vision in a sustainable way. Current architectures seem to be distancing
from traditional clusters of homogeneous nodes to clusters of heteroge-
neous nodes, due to the integration of specialized hardware optimized
for specific computing purposes [11,12], as a way to accomplish more
operations per second. This trend has led to the last ranking set with 7
of the top 10 supercomputers being heterogeneous clusters with GPUs.

Cutting-edge HPC systems use server-grade multicore CPUs, which
rely in high core counts to achieve large computational throughput,
often coupled with hardware accelerators, such as GPUs. The recent
push to wider and faster processing devices has increased the power
draw of both CPUs and accelerators. These factors, combined with the
requirement to minimize the connection distances among CPUs and
accelerators, result in high wattage densities at these systems’ node-
and rack-level. This imposes several challenges regarding the cooling
of those supercomputers. Moreover, HPC centers often have unique
characteristics, such as limitations in job scheduling strategies and
management of electrical energy consumption, which stem from the
requirement of high availability of most, if not all, computing resources.

The adoption of edge computing architectures and the IoT, which
aim to process data close to its source, will be essential for time-critical
and data-intensive applications. Those architectures also increase the
potential of digital twins, virtual representations of objects that merge
2

sensor data with surrogate models [13]. The combination of Cloud
and HPC allows to apply large amounts of compute power by sharing
the computational burden [14] and allows the collaboration among all
stakeholders active in the digital continuum [15].

The previous arguments led to increased efforts by the industry and
research institutions to enhance the sustainability of computing centers
in their design and operation, with new technologies in the sector con-
tributing to its decarbonization. Furthermore, it motivated regulation,
standardization, and funding opportunities regarding implementing
and reporting energy efficiency measures and energy management
strategies to minimize energy consumption and carbon footprint. Re-
cently, the concept of carbon-responsive computing was proposed as
the range of techniques in which ‘‘energy sources and computing
elements cooperate to prioritize energy usage with the least carbon
intensity’’ [16]. This concept offers a holistic and broad perspective on
the interdependencies of computing and energy systems, and the socio-
technical implications of emerging techniques that aim to decarbonize
the ICT industry as a whole.

There is a growing need for actions that enhance sustainability
awareness and responsiveness in HPC centers due to increasing en-
ergy consumption, costs, and environmental impact concerns. A focus
shift from costs to carbon emissions in HPC creates a research and
industry gap, in which innovations related to hardware, software and
applications, resource management systems, user interaction, and novel
business models have an opportunity to thrive. These innovations must
help reduce operational costs and carbon footprint but also support the
overall growth of the industry [4].

This work aims to provide an overview of measures and opportuni-
ties related to sustainability in HPC centers. This objective is achieved
with a thorough review of available literature, recent industry trends,
and a critical view of HPC infrastructure, software, and resource man-
agement. The work also focuses on the roles of the users, digital
service providers, and their interaction, to further contribute to the
decarbonization of this sector. The main contribution of this review is
exposing the current trends of the HPC sector from a decarbonization
perspective, detailing available data for state-of-the-art supercomput-
ers, and proposing future lines of research. While other reviews focused
on renewable energy integration and decarbonization of data centers,
this review highlights the specific challenges of decarbonizing the
main components in HPC centers (infrastructure, hardware, software).
Moreover, this work includes a new dimension in the discussion – the
service provided by HPC centers – not adequately addressed in similar
studies. This analysis covers the users and service providers, as well as
recent trends in policy, funding, research, and business models. This
work is expected to provide a critical analysis of the energy and IT
sectors, with implications for the design of future HPC systems.

This document is organized as follows: Section 2 details the method-
ology used in the review and characterization of the work presented
throughout this communication; Section 3 addresses the HPC infras-
tructure, and strategies for energy efficiency; Section 4 discusses
hardware- and software-level tools to monitor and manage the energy
usage of HPC resources; Section 5 presents the services provided by
HPC centers, analyzing the impact of policies and business models;
Section 6 presents the main key performance indicators available and
some recent discussions around this topic; finally, Section 7 summarizes
the most relevant topics of this review and proposes future research
directions.

2. Literature review methodology

Previous surveys on sustainable and carbon-neutral data centers
mostly focus on Cloud computing. While there are many surveys avail-
able on energy-aware computing in HPC, they may not cover all the
aspects of such a fast-paced field, which include changes in technology,
but also in the surrounding ecosystem. Therefore, this review aims to
provide a comprehensive and multidisciplinary overview of the latest
developments that may not have been covered in previous surveys.
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Table 1
Comparison with other surveys.

Reference Year Target Carbon Renewable Infrastructure Hardware Software Service

[4] 2015 HPC, traditional ✓ ✓ ✓

[17] 2019 HPC ✓ ✓

[18] 2021 HPC ✓ ✓

[7] 2021 traditional ✓ ✓ ✓

[19] 2022 traditional ✓ ✓ ✓ ✓ ✓

[20] 2022 HPC, traditional ✓ ✓ ✓ ✓

Current study HPC ✓ ✓ ✓ ✓ ✓ ✓
Table 1 summarizes the differences between this and other surveys on
sustainable data centers. In detail, the columns in the table describe: if
the target of the review is traditional data centers, HPC centers, or both;
if carbon emissions are addressed; if the integration of RES is addressed;
if the sustainability and energy usage at the facility/infrastructure level
is addressed; if the sustainability and energy usage at the hardware
level is addressed; if sustainability and energy usage at software level
is addressed; and if the sustainability and energy usage of the digital
service as a whole is addressed. The research in this study focuses on
the decarbonization of HPC centers, not only on the infrastructure but
going from the digital service to the surrounding ecosystem.

A thorough literature review on sustainability in the planning and
operation of large-scale computing centers was conducted, with more
focus given to HPC. To be able to provide a multidisciplinary view,
we consider research from multiple domains, including electrical engi-
neering, control systems, and computer science. The review included
scientific publications, governmental and industry reports, as well as
reports from scientific projects, and concrete examples of sustainability
practices from research and industry (presentations, workshops, and
news). The most relevant documents close to the topic addressed
in this work were selected, and the remaining were discarded from
the analysis. Although a large amount of literature is available for
sustainability-related topics in traditional data centers, there is little
work to reflect the current concerns and efforts on sustainability spe-
cific to the HPC industry. In some topics of this work, both systems
share roughly the same issues, but priority was given to literature that
was specific to HPC.

The data sources for the information in Tables 2–5 include the
TOP500 and Green500 lists, as well as other academic and industry
publications and presentations reporting on the energy efficiency and
decarbonization measures of HPC centers. The main limitation of this
study is the low availability of data regarding the performance of
state-of-the-art HPC systems. Although there is some publicly available
information on the mentioned lists related to hardware and some per-
formance indicators, more specific and updated information on other
performance metrics and each system’s energy and IT infrastructure
was scattered through multiple sources or even not found for some of
the described HPC systems. Therefore, not all modern supercomputers
were included in the analysis.

The four-pillar framework proposed by [21] divided energy effi-
ciency in HPC centers into building infrastructure (reduction of energy
losses, efficient cooling technologies, and practices, reuse of waste
heat), hardware (reduction of hardware power consumption, acquisi-
tion of energy-efficient equipment), system software (workload man-
agement, tuning of software tools), applications (optimization of ap-
plications to the hardware in use, selection of efficient algorithms
and libraries). The aim of this work was to promote cross-pillar mea-
sures that benefit from the interaction between different levels of the
HPC center. Work developed by [22] extends this categorization and
proposes a seven-pillar framework for energy efficiency in HPC: in-
frastructure, system hardware, system software, applications, network,
policy, and usage.

The division in those previous works was done taking into ac-
count energy efficiency approaches, but not the broader sustainability
concerns. While the latter work provides a more complete overview
of the entities involved in the management and operation of HPC
3

centers, its view of the systems and their connections presents limited
opportunities to address sustainability concerns. This work adopts a
more abstract view of this seven-pillar organization, focusing on the
entities and relationships most relevant for a holistic view of the
decarbonization concerns in HPC centers. This view is depicted in
Fig. 1 where, for each highlighted topic (and most relevant subtopics),
the main sustainability concerns are exposed and discussed in their
respective sections throughout the study, unraveling recent progresses
in the field and perspectives for future research. Furthermore, relevant
information on current large-scale HPC systems is presented for better
comprehension of the state of the art.

3. HPC energy assets and technologies

This section addresses the decarbonization of the HPC energy infras-
tructure, in terms of energy efficiency strategies and technologies, and
new assets like RES and storage.

Fig. 2 presents an overview of the different components of an
HPC center, such as the users, and the IT and energy infrastructure.
Users interact with the HPC infrastructure using the frontend cluster
nodes, which are dedicated to code compilation and job submission and
interacts with the backend compute nodes through resource managers.
A user submitted compute job is assessed by the resource manager,
which combines a predicted computational profile of the job with
information about the usage of the compute nodes to allocate a set of
resources to compute the job.

The electrical energy required to power the whole infrastructure
(the HPC center and its offices) can be obtained through on- or off-site
generation, or directly from the grid. The heat output from supplying
power to the hardware and HPC center can be reused to both office and
district heating.

3.1. Energy efficiency strategies and technologies

The energy consumption of computing centers is mostly related
to their computing resources (servers, communication equipment, and
storage), and physical resources related to the infrastructure (cooling,
power supply, lighting, and other systems). Cooling can account for up
to 33%–40% of data center energy usage depending on location and
power density and consumes hundreds of billions of gallons of water
per year in the USA [23]. As a result, most efforts regarding energy
efficiency are centered on the computing itself (hardware) and in new
cooling equipment and technologies, their configuration, and possible
applications for waste heat. Energy efficiency measures decrease the
overall electrical energy consumption associated with the operation of
an HPC system.

Multiple reviews of concerns on energy efficiency and usage in
traditional data centers and the main measures for its improvement
are available [4,7]. Regarding this topic, traditional data centers share
roughly the same concerns as HPC, with a focus on infrastructure and
the efficient management of energy and computing resources. Specif-
ically for HPC, work by [24] gathers energy-saving techniques which
include energy monitoring and control, site infrastructure, hardware,
and software, while describing the main differences to traditional data

centers.
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Fig. 1. Interaction among the entities in the proposed organization of this review.
Fig. 2. Overview of the relations among the different components in an HPC infrastructure, its users and submitted jobs, and electrical and thermal energy flow.
The main concerns when designing a new HPC infrastructure are
reported in [25]. In this work design solutions are mainly evaluated
according to their support of future systems, sustainability, lifecycle,
and initial costs. A brief overview of measures in different subsystems
is presented in the following subsections.

3.1.1. Cooling
The cooling infrastructure is crucial to maintain the environmental

conditions of computing rooms within a specified operational range,
due to heat dissipation from IT equipment, a byproduct of the oper-
ation of HPC servers. HPC systems have demanding thermal stability
specifications [26], thus optimized and well-designed cooling systems
assure the safety of operation, and impact the overall efficiency and
performance metrics. The selection of cooling technology is imperative
and depends on factors such as server density, cost, total power con-
sumption, available IT and building infrastructure, and how they are
integrated. Cooling systems in computing centers are currently based
on the following strategies: air-cooling, liquid-cooling, phase-change
cooling, and immersion cooling.

Liquid-cooled systems are now the standard technology due to
the high thermal loads that recent computing centers must support,
replacing air-cooled systems. Usually, this technology is applied with
the use of cold plates located near the equipment [27], and one of the
4

main advantages is a more efficient heat transfer, which results in the
possibility of using higher operating temperatures within the system,
and consequently leads to a higher quality (higher temperature) waste
heat. Another advantage is the potential of eliminating some system
components. When server blades do not support water cooling, an
alternative strategy is rear-door cooling [26], where water is distributed
through a piped network to the back of the servers, transferring heat
from hot air to the water, which is then cooled. As stated by [28], en-
ergy efficiency associated with the operation of the cooling equipment
can be enhanced by using hot water, a technique that is already com-
monly adopted. Another technique is the free cooling method [4], to
take advantage of natural resources available, although its effectiveness
is greatly dependent on the location of the facility. This principle relies
on the use of external low-temperature air, used directly or indirectly
(by means of heat exchangers). It can also be done using a cold-water
source. The system can, therefore, operate with lower or null cooling
power by minimizing the use of mechanical active components for a
certain number of hours per year.

Phase-change cooling is another solution that has been recently
adopted by the computing industry, where liquid-vapor phase change
occurs within the heat exchange process. A recent review [29] summa-
rized the advantages of this solution and recent progress. Another type
of cooling is immersion systems [30], which directly immerse hardware



Renewable and Sustainable Energy Reviews 189 (2024) 114019C.A. Silva et al.
in a non-conductive liquid, although introducing some maintenance
challenges and the need for compatible hardware. Several companies
offer commercial immersive cooling solutions [31,32].

Airflow management covers a set of principles that computing
center operators can rely on for cooling optimization. The usual server
configuration takes advantage of the hot/cold aisle arrangement, a
layout where the air enters the equipment through cold aisles and the
hot air exits through hot aisles, preventing both streams from mixing
and ensuring a higher energy efficiency [27]. A related measure is
the prevention of hot spots, which appear due to recirculated airflow
when airflow management is not well performed. Containment systems,
layout optimization, calculation of ventilation efficiency indices for
recirculation analysis, and computational fluid dynamics techniques
can diagnose and act on suppressing hot spots, and better characterize
the room’s airflow and temperature field [33].

Another possibility for energy efficiency regarding cooling is to
allow equipment to work in higher room temperatures [4]. This tech-
nique results in reduced energy demand, and increases the possibility
of using free cooling for a greater percentage of the year. Reliability
and operational conditions of each IT equipment are the main concern
and drawbacks of this idea. Other strategies include the use of variable
airflow, the use of equipment in partial load (fans, pumps, chillers), and
the selection of the most efficient equipment in an early stage when
designing a computing site.

3.1.2. Waste heat
Waste heat plays a critical role in energy efficiency, as most of the

electrical energy consumed in a HPC center is converted into thermal
energy. The powerful computing resources available in HPC result in
large amounts of heat being removed, with the potential to be captured
and reused for many applications [34]. The amount of waste heat
(and its quality) depends on the selected cooling technology, which
consequently defines the location and temperature at which the heat
can be captured [35].

The main opportunity for waste heat reuse is in space and water
heating, which includes local heating of the HPC facility. If feasible,
waste heat can be distributed in nearby buildings and neighborhoods
through district heating, which consists of using the heat generated
from different energy sources, and connecting to consumers (residen-
tial, businesses, and industries) through a piped distribution network.
A discussion is presented in [35] on the integration of residual heat
specifically from data centers in district heating networks, and the main
challenges. This type of solution for waste heat can be found in some
state-of-the-art computing centers (Table 2). As an example, LUMI [36]
is using the waste heat generated by their supercomputer to supply a
local district heating network in Finland with up to 20% of that area’s
thermal needs.

A thorough review of other possible wasted heat applications was
made by [27] while describing promising technologies. The authors
addressed the issue of low-quality (i.e., low-temperature) residual heat
and how to overcome this obstacle, including using heat pumps to
increase fluid temperature. Options found by the authors for waste heat
reuse include power plant co-location, absorption cooling, direct power
generation, biomass co-location, and desalination/clean water.

3.1.3. Power supply
The power supply of an HPC infrastructure deals with ensuring a

reliable power supply to the IT and remaining equipment, due to the
critical nature of the service. As HPC scales in computing power, so do
its power requirements.

HPC systems can be subjected to abrupt variations in their power
consumption, due to the inherent variable behavior of computing-
intensive applications scheduling and execution. Large peak demands
(dozens of MW) are expected in the near future, which will impact
5

power distribution requirements and enhance these concerns. Recently,
load swings of over 7 MW have been reported in multiple large-
scale HPC systems in timescales of seconds or less, which must be
immediately addressed by the infrastructure’s power supply [37]. A
deeper understanding of the fluctuations and of local electrical grid
stiffness [38], as well as the use of devices such as on-site electrical
energy storage, can help support these critical periods, and ease the
burden for the cooling system and the electrical grid, which must
minimize voltage and frequency fluctuations.

Energy efficiency measures on the power supply architecture and
equipment usually relate to efforts to reduce distribution inefficien-
cies/losses. The work of [4] indicates that to avoid AC/DC conversion
inefficiencies, and direct current electrical networks were studied for
power distribution architectures. DC-powered data centers have been
studied in [39], where challenges related to power electronics were
discussed at several levels (from building to individual racks and com-
ponents). This work showed that projects with DC distribution at the
building level have been tested, showing positive efficiency, availabil-
ity, and reliability results. More recently, [40] thoroughly reviews the
power conversion steps (AC/DC and DC/DC) of data center power
supply systems, including high-voltage DC distribution, and reports that
going from AC to DC-powered can lower the number of conversion
stages and increase the overall efficiency (ranged from 93 to 96% for
the reviewed architectures, from the grid to CPU-level). Moreover, the
authors emphasize the importance of recent technological improve-
ments (e.g., at the converter level), and argue that innovations related
to circuit topology and control are important to enable renewable
energy integration. The authors of [4] indicate that the usage of Unin-
terruptible Power Supply (UPS) units, which provide emergency power
when the main power supply fails, can be bypassed to avoid conversion
inefficiencies, and that modular UPS devices can be deployed (and
activated/deactivated according to the workload). The use of UPS can
also be considered only for critical infrastructure components, to reduce
overall losses [41].

3.2. Distributed energy resources

3.2.1. Renewable energy sources
The integration of RES, such as wind or photovoltaic systems,

in the power supply of computing centers is an obvious measure to
decarbonize part of the HPC center electricity supply, diversify elec-
trical energy sources, and achieve a certain level of independence (or
resilience) from the main grid.

Besides on-site generation, off-site generation is also a viable op-
portunity if RES near the facility are deemed insufficient [35]. As
power requirements continue to increase, on-site generation would also
require a larger area, usually a limited resource. The authors of [35]
also present details and examples of RES provided by third parties to
offset carbon emissions, which include the acquisition of Renewable
Energy Certificates (REC) that track the energy source of the consumed
electricity, or Power Purchase Agreements (PPA), in which the facility
purchases electricity from a RES producer via a contract that establishes
the terms and prices. These solutions increase the RES share in the
power supply while avoiding high upfront investments in RES systems.

In fact, currently, it is not practicable to power a data/HPC center
only with RES at a reasonable cost and reliability, and thus energy
storage and conventional generators are still necessary, as indicated
by [20], which also provides many examples on investments for on-site
RES systems from data center companies.

A good example of a mixed solution regarding the use of RES
is the case of the Texas Advanced Computing Center (TACC), which
purchases credits from wind power plants in West Texas, while us-
ing on-site generation through PV panels. Further examples of RES

integration in HPC centers are presented in Table 2.
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3.2.2. Energy storage
Battery energy storage systems are the standard solution in UPS

units to assure backup power for short-time emergency operation. Nev-
ertheless, large-scale on-site energy storage systems are also becoming
the obvious solution to complement and replace, to some extent, diesel
generators as backup power, and can be combined with on-site and
nearby RES power plants [20].

Therefore, using batteries can increase the self-consumption levels
associated with energy generated by on-site RES and decrease the
dependence on the electrical grid. Moreover, it can also enable HPC
infrastructures to act as providers of ancillary services to the power
system or to participate in flexibility markets. Furthermore, it can
help advanced energy management strategies to be deployed, in which
charging and discharging operations are aligned with periods that are
favorable to a specific objective (see Section 4 for a more detailed
review).

Thermal energy storage (TES) is utilized to store captured heat
removed from the IT equipment and provide local space and water
heating. Within a district heating network, TES can act as a buffer
when the network lacks demand. A recent review was done by [42] on
thermal energy storage’s current status and applications in data centers
and its integration with the cooling system. TES can also consider the
storage of coolant to use for IT equipment cooling, or to participate in
district cooling networks. Work by [35] details concrete examples that
used thermal storage, including ice storage systems.

3.2.3. Controllable loads
The electrical load of an HPC infrastructure is approximately the

result of executing a set of workloads submitted by HPC users, plus the
overhead consumption of the facility. Workloads can be scheduled to
alter the overall electrical load, which relates to the concept of load
shifting. Thus, the HPC load can be partially considered a controllable
load. Furthermore, cooling is also a result of the workload execution,
thus the cooling electrical load is also controllable to some extent, as
long as the system operates in a safe range. Many restrictions limit the
extent of this control, such as the low flexibility that results from the
high utilization rates of HPC centers (when compared to traditional
data centers), the resource management capabilities of the system, and
the quality of service concerns and commitment to SLAs.

3.3. Use cases

A more robust approach to address sustainability concerns can
consider the combination of different measures presented throughout
the previous sections. Several HPC facilities are now following this
approach, for example:

• The Super MUC-NG HPC at Leibniz Supercomputing Center has
reportedly achieved around 30% savings in energy consumption
using efficient measures such as low-power servers, reduced cool-
ing power by using warm water cooling, energy-aware schedul-
ing, and adsorption chiller as a strategy for heat reuse.

• LUMI, a consortium formed to apply to EuroHPC, is using the
waste heat generated by their supercomputer to supply a local
district heating network in Finland with up to 20% of that area’s
thermal needs, while integrating 100% renewable energy from
hydropower, claiming to be the first carbon-negative HPC center.

• ESIF HPC center from the National Renewable Energy Laboratory
considers a cooling system using warm water at the component
level, and reusing the waste heat from the Peregrine and Ea-
gle supercomputers in other applications within the surrounding
building.

• A recent report provided by Los Alamos National Laboratory
reveals the main concerns on how to design an energy-efficient
HPC supercomputing center [25]. The institution is assessing
design alternatives to support two exascale supercomputers ar-
riving in 2026, with considerations in many levels of its energy
6

infrastructure.
• Advanced Research on Integrated Energy Systems (ARIES) [43]
is a research platform from the National Renewable Energy Lab-
oratory that performs research related to the development of
innovative energy-related technologies (at the 20 MW level),
which is supported by an 8 PF supercomputer. Their Microgrid
Infrastructure already demonstrated the capacity to support the
associated campus during outages, when a recent and unexpected
event made researchers successfully connect 430 kW of PV and a
1.5 MW wind turbine to charge their battery and repower the site.

• Massachusetts Green High Performance Computing Center relies
on periods of low external air temperature to use free cooling
techniques, claiming that, in certain conditions, chillers can be
turned off for around 70% of the time, and are mainly powered
by RES from near-by hydroelectric and photovoltaic generation.

• Minho Advanced Computing Center’s Sustainable HPC
project [44] is an ongoing project, focused on developing an
innovative energy management solution that allows a more sus-
tainable operation of the upcoming Deucalion supercomputer.
The project is developing an energy management system with
predictive capabilities leveraging controllable assets and on fore-
casted variables to actively shift the system to a low-carbon
operation. It will integrate RES and multiple storage solutions
(electrical and thermal).

3.4. Discussion

Table 2 provides a list of recent supercomputers and their HPC
center information to support the discussion. A set of representative
centers was chosen, which allows for analyzing the evolution of HPC
energy infrastructures in recent years.

Liquid-cooled systems are now the standard in HPC centers due to
the high thermal loads that recent computing centers must support,
mostly replacing air-cooled systems. For example, the Riken HPC center
previous supercomputer, the K computer, had a power ratio between
supercomputer/liquid cooling/air cooling of 85/7/7, while its recent
Fugaku supercomputer, currently 2nd in TOP500 [9], has a ratio of
86/11/1. While some systems only use rear-door cooling, the trend is
to use 100% water-cooled components, not only for the CPU or GPU,
but also dual in-line memory modules (DIMM) and network interface
card (NIC), as on Frontier supercomputer racks. Table 2 also shows
that temperatures used for liquid-cooling increased considerably in the
last decade and that the current trend is using warm/hot water [45].
The use of warm/hot water decreases overall cooling power, due to
a reduced use of the cooling units, and increases the potential of free
cooling technology. Free cooling is now adopted in most centers, as
shown in Table 2.

Many studies are also available on the topic of RES integration in
data centers. There is a recent trend to increase the RES share in the
electricity supply using local RES generation, off-site generation, or al-
ternative means (power purchase agreements, credits, and certificates),
with some examples presented in Table 2. Also, energy storage is being
discussed beyond of the usual role of backup power.

The sustainability of supercomputers and HPC centers is a critical
concern as these facilities continue to grow in scale and computational
power. Taking into account the current trends and challenges we
envision:

• Research into more efficient liquid cooling systems, including
warm water cooling, to dissipate heat from increasing high-
density computing components.

• Assessing the feasibility and effectiveness of deploying on-site
renewable energy systems, such as solar panels and wind turbines,
combined with microgrid solutions to power HPC centers. This
also implies developing intelligent energy management strate-
gies and algorithms that adapt computing tasks to match the

availability of renewable energy resources.
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Table 2
Trends in cooling and RES in high-performance computing centers.

Name Year RES Waste heat reuse Water Temp. (◦C) Free cooling

K 2012 7–9 ✓

Titan 2012 5.5–8.8
Summit 2017 17–21 ✓

SuperMUC-NG 2018 ✓ 47–50 ✓

ESIF 2019 ✓ ✓ 18–23 ✓

Frontera 2019 ✓ 20–25 ✓

Fugaku 2019 15 ✓

LUMI 2021 ✓ ✓ 30 ✓

CEA-HF 2021 ✓ 45 ✓

Frontier 2022 32 ✓

Leonardo 2022 37 ✓
• Deploying advanced energy storage solutions, including high-
capacity and fast-charging batteries, to store surplus renewable
energy for use during periods of high demand or high electricity
market prices, combined with thermal energy storage.

. HPC software and hardware resources

Historically, new HPC systems focused on improving the raw com-
utational performance, but recently, energy efficiency has emerged
s an equally critical guideline. It is no longer possible to perceive
oftware and hardware as isolated entities in the HPC ecosystem;
nstead, their intrinsic interdependence must be recognized to achieve
nergy-efficient computing. Energy expenditures not only strain bud-
ets but also contribute to environmental challenges. Consequently,
he HPC community is at an inflection point where the design and
rchestration of the software stack, including the operating system,
ibraries, compilers, and applications, are intrinsically linked with the
nderlying hardware infrastructure, comprising heterogeneous servers,
omplex memory hierarchies, and specialized accelerators.

.1. Resource management systems

The adequate management of the available computational resources
n computing clusters is key to decrease data centers’ energy consump-
ion. Several strategies and tools have been designed to monitor and
anage the hardware in such systems, but mostly targeting cloud com-
uting. The hardware in HPC cannot be managed to the extent often
equired by frameworks that target cloud computing. The requirement
or high availability of resources in an HPC cluster minimizes the poten-
ial for aggressive energy management, such as server sleep/shutdown,
sually employed in cloud environments. However, other less intrusive
pproaches, such as dynamic frequency scaling, are still suitable, as
ong as workloads’ behavior and energy consumption can be predicted
ith some accuracy.

.1.1. Energy-aware computing
The reduction of energy consumption in cloud computing data

enters is an issue that has been tackled since the beginning of the last
ecade. The work of [46] presents a framework for resource allocation
hat accounts for application performance and the power draw of the
llocated hardware. However, this approach relies on self-optimization
lgorithms to predict the power draw of workloads, resulting in a non-
deal allocation of resources in several edge cases. The emergence of AI,
hich was not mature enough when this work was published, had the
otential of significantly improving the predictions, leading to better
esource management and less overall power draw.

Work by [47] has shown that AI can help improve resource allo-
ation in cloud computing systems. The authors developed a frame-
ork combining a virtual machine resource-allocating scheduler with
dynamic power management policy, identifying an adequate config-
ration for the allocated hardware that minimizes power draw while
aintaining reasonable performance. This work shows that reinforce-
ent learning-based algorithms can aid in accurately predicting energy
7

consumption and tuning the hardware resources when the state/action
space is too large for other approaches.

The work of [48] takes this approach a step further, combining
fine-grain tuning of the hardware resources at the software level with
dedicated power monitoring hardware, proposing an open-source su-
percomputing architecture. The authors also use AI-based methods to
predict the power draw of workloads, which impacts the hardware
and its configuration allocated to a given job. However, the potential
of this architecture is dependent on the adoption of custom monitor
and management hardware to be integrated into the computing nodes,
as the availability and accuracy of power sensors vary among chip
manufacturers.

The operation of a supercomputer can be shifted by energy man-
agement strategies that contribute to a certain objective or target
specific performance metrics. Author of [49] states that at exascale
HPC, power is a scarce resource, thus wise decisions have to be made
regarding power allocation. Currently, there is a greater emphasis on
the interdependence of supercomputer and cooling infrastructure in
HPC center designs [50]. Given their size and complexity, optimizing
the operation of HPC systems requires a coordinated effort to plan and
manage power consumption across the entire infrastructure.

Related surveys also discuss energy management in computing cen-
ters. For example, [20] divided the management of green data centers
in energy source and storage management, and IT management (for
different types of workload), and addressed both topics separately. A
number of recent examples have been discussing how the management
of energy and computing resources can be addressed in a more coor-
dinated or cooperative way. In the current work, both energy and IT
infrastructure management are discussed jointly.

In the literature, authors typically focus on the concept of energy-
aware computing, defined as a set of techniques that enable managing
computing and energy resources to adjust the real-time energy usage of
the facility, based on the current workload and the available resources.
A taxonomy study on energy-aware computing has been performed
by [51], which characterize the different approaches on energy effi-
ciency according to the scale of applicability (from compute servers
to data centers and grid/clouds), the goal of the approach (direct or
indirect energy savings), methodology (workload management, hard-
ware configuration, programming, etc.), and viewpoint (different goals
from a user, developer, or resource manager perspectives). While the
related work mentioned in this study is outdated, the taxonomy is
still relevant. A recent survey on the state of energy-aware HPC was
developed by [17], and discusses the available optimization methods,
categorizing them into monitoring and controlling.

For controlling methods such as scheduling, authors tend to rely
on directly altering the workload, by shifting or migrating it (spatio-
temporal workload shifting). Shifting is accomplished through job
scheduling algorithms and policies. For example, the work in [52]
matches the workload to the RES supply available and states that
green-energy-aware scheduling can be crucial for developing a more
sustainable IT ecosystem. Other works include [53,54]. A comprehen-

sive survey in [20] lists existing RES-availability scheduling approaches
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on single and multiple data centers, with examples of how the demand
from IT resources can be adapted to the energy or power availability.

The authors of [55] monitored the energy consumption of jobs using
the resource and job management system to be reflected in the system’s
accounting. Such initiatives aim to sensibilize the users to the power
draw of their applications, to make this a key consideration when
submitting jobs to such systems. This approach was extended in [56,57]
by implementing a resource and job management system that lim-
its the overall energy consumption of HPC systems through several
mechanisms: Dynamic Voltage and Frequency Scaling (DVFS), which
adapts the processor voltage, lowering its frequency and consequently
minimizing the power draw; Dynamic Concurrency Throttling (DCT),
which reduces the amount of available resources in a processor, such as
the number of hardware threads; and Power Capping, which is similar
to DVFS but limits the power draw of the whole system according to
an energy budget.

Moreover, the scheduling of jobs in a resource and job manage-
ment system can consider the availability of local renewable energy
sources or green energy from nearby power plants. GreenSlot [52], a
parallel batch job scheduler designed for a data center with a power
supply composed of photovoltaics and the electrical grid as backup,
schedules the workloads in a way that optimizes green energy consump-
tion, relying on the prediction of future availability of solar energy,
and ensuring that jobs’ deadlines are not compromised. Meanwhile,
GreenSwitch [58] is a framework that enables scheduling workloads
and choosing the optimal energy source (solar, battery, and/or grid) in
different periods.

4.1.2. Thermal-aware computing
Thermal-aware computing is another approach that attempts to

manage heat generation in computing hardware as a byproduct of
computation. Such approaches monitor the heat generated by a system
and manage the software and hardware to prevent excessive thermal
output while maintaining adequate performance levels. Thermal-aware
approaches can involve management of the cooling infrastructure, the
configuration of the computing hardware, scheduling, and resource al-
location. Mixed-integer linear programming formulations are explored
by [59], in the context of task scheduling for HPC centers. To achieve
this goal, thermal models that characterize the temperature profile
(both in time and space) and different objective functions were con-
sidered, such as the minimization of makespan or energy consumption.
A thermal-aware workload management problem is also formulated
by [60] to maximize the RES self-consumption, by taking advantage
of pre-cooling strategies. If there is RES surplus generated on-site,
computer rooms can be cooled to a lower temperature (within the
recommended range) and delay the need for cooling power. Differ-
ent temperature control strategies and their impact on reducing car-
bon emissions are compared by [61], by developing an optimization
problem and testing it with different workloads.

4.1.3. Carbon-aware computing
More recently, the concept of carbon-aware computing focused

on the carbon intensity associated with the electricity mix supplied
to computing facilities, and how different energy management and
optimization strategies can reduce the overall carbon footprint of com-
puting systems while maintaining the quality of service. Geographically
distributed data centers were explored by [62], exploiting the spatio-
temporal variability of grid carbon intensity. The authors compute the
optimal operation of a cloud service under a carbon emission reduction
budget, by developing a carbon-aware control framework. An emission-
aware resource planning model considering day-ahead scheduling and
uncertainty was introduced by [63] to reduce the carbon footprint of a
microgrid that contained a data center. A two-stage optimization prob-
lem allocated workloads in different time slots within a job scheduler,
by minimizing a weighted sum of electricity costs, carbon footprint, and
8

operational risk.
Google published initial results for their Carbon-Intelligent Com-
puting System [64], a data center carbon-aware workload shifting
initiative. The project relied on creating virtual capacity curves (hourly
resource usage limits) as a load-shaping mechanism for the next day’s
resource usage, based on forecasts of grid carbon intensity, and flexi-
ble/inflexible demand. The optimization problem minimized
a weighted sum of carbon emissions and power peaks on a daily basis.
Work by [65] analyzed workload temporal shifting to less carbon-
intensive periods, by identifying delay-tolerant workloads and relying
on carbon intensity forecasting. The authors considered carbon inten-
sity data from different regions to better understand the potential of the
approach, and relied on scheduling flexibility of the workload, although
not accounting for resource constraints.

A review by [19] included carbon-aware computing as a key as-
pect to achieve carbon-neutrality in data centers, by job scheduling
or migration to geographically distributed data centers. However, the
authors state that the available literature does not reflect interactions
between IT components and the surrounding infrastructure. There-
fore, a digital twin approach (included in their work) could enhance
scheduling policies by accounting for the impact on the remaining
infrastructure. The Carbon Explorer framework was proposed by [66],
with a holistic view of sustainable data centers given by a multi-
dimensional solution space, according to investments in RES capacity
(wind and solar), battery storage capacity, and carbon-aware workload
scheduling. The solutions were analyzed according to the trade-off
between their embodied and operational carbon footprint. It was con-
cluded that only a combination of the different techniques could aid
data centers in approaching a 24/7 RES operation.

Carbon-responsive computing [16] is a concept that explores the
interdependencies of energy and computing in a holistic way, by pri-
oritizing energy sources with the least carbon intensity. The term
comprises techniques that exploit the collaboration between all kinds
of computing elements and different energy sources while dealing with
the increasingly distributed nature of RES and computing infrastruc-
tures. The concept also focuses on the sociotechnical implications that
come from the implementation of carbon-aware techniques.

Usual performance metrics to be optimized with energy manage-
ment include power and energy consumption, and job execution time.
More recently, the focus shifted to maximizing the RES
self-consumption or minimizing the indirect carbon emissions. Assess-
ing the compromise between applying energy management techniques
and the overall system’s performance or degradation in the digital
service is common.

4.1.4. Workload tracing and analysis
The wide range of applications, with varying characteristics and

computational behaviors, contributes to the overall irregularity of the
HPC workloads. Adequate tracing of the workloads is crucial to de-
veloping more accurate predictive models to mitigate this irregularity,
which is shown to be a key limitation of the work presented in the
previous section.

The work of [67] focuses on characterizing scientific workflows,
the primary type of jobs executed in large-scale heterogeneous HPC
clusters, and surveys current strategies for energy-aware job schedul-
ing. A framework architecture for energy-aware workflow management
and scheduling is proposed but addresses only the interaction between
the workflow scheduler, energy prediction, and server management,
rather than providing concrete solutions to tackle the issues at a lower
level. The authors also propose several novel research opportunities
of combining specific scheduling heuristics depending on the meta
characteristics of the workflows. They emphasize the need for better
and faster AI-based power draw prediction models, as their accuracy
significantly impacts the quality of the scheduling solution.

This characterization of the energy properties is relevant at the
workflow level, which combines user and third-party code (other tools,

libraries, etc.), but also at a lower abstraction. Work by [68] addresses
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the energy efficiency of several constructs available in OpenMP, one of
the most popular libraries in scientific computing, to develop parallel
code. The authors developed benchmarks and assessed the performance
of OpenMP directives and loop transformations across a variety of com-
pilers. This work concludes that inadequate handling and scheduling of
threads, which is usually under the responsibility of the developer or
programmer, has a considerable effect on the overall power draw of an
application. The use of parallelization libraries that have a greater focus
on the scheduling of threads and irregular workloads over OpenMP has
the potential to improve the power draw of an application.

The energy profile of several AI algorithms was analyzed by [69] to
estimate trends in the power draw of such workloads on heterogeneous
servers with hardware accelerators for AI tasks. The authors provide a
comparative energy consumption analysis of AMD and NVIDIA GPUs,
the most common solution for these workloads, but also include ac-
celerators from Google, Cerebras, Qualcomm, and Intel, among others.
From this analysis, the authors concluded that gains in energy effi-
ciency cannot be expected only from improvements in hardware, as
efficiency scaling is slowing between generations of hardware, and that
the training of AI algorithms is becoming increasingly complex. The
authors claim that energy efficiency should be enhanced by combin-
ing advancements in hardware architecture specifically designed for
energy-intensive computations, such as the accelerators tested, with
energy-aware fine-tuning of the code.

Simulating the overall operation of a computing center can save
time, and avoid costly experiments and downtime of existing com-
puting infrastructures while enhancing the reproducibility of studies
regarding resource management systems and policies, and fostering
innovation in resource management. Using simulations, multiple sus-
tainable practices in HPC centers can be designed and tested at low
cost and without disturbing their normal operation [70].

In [71], a complete machine learning framework has been created
to identify performance anomalies at both the job and node levels for
compute nodes operating within a production HPC system. The frame-
work collects metrics related to resource usage and CPU performance
counters of the applications running in the system to train and validate
an artificial neural network. This network is then used to predict which
anomalies are restricting both energy efficiency and performance of an
application. This information is available through a web interface to
the users of the HPC system.

Simulators can include only the scheduling part of the resource
management system, to test different approaches to scheduling policies.
However, other solutions exist that consider the whole computing
resource management system, or even the infrastructure itself, with the
interdependencies of computing and energy resources.

A review of the available tools for simulation of job scheduling
and/or energy consumption in HPC systems was made by [17] and
was then categorized according to its target system (grid, cluster,
data center, among others). Some relevant tools found include: DC-
worms [72], a tool that assesses energy efficiency in distributed com-
puting infrastructures, including HPC workloads [72], TracSim [73],
a simulator designed for a common HPC cluster that works with a
fixed power cap, SimGrid [74], a versatile and scalable discrete-event
simulation framework for grid environments, extended by [75] to
account for energy consumption of concurrent applications in HPC
grids featuring DVFS technology for multicore processors. Additionally,
the work of [76] evaluated the efficacy of two popular energy-aware
workflow scheduling algorithms in producing effective schedules for
I/O-intensive workflows.

A common issue with existing simulation studies is using only syn-
thetic or random data for job traces. Other issues include unmaintained
code, replication of simulators in different languages, and the risk of
9

undetected errors and poor validation with real systems [77].
4.2. Computing resources

In the last years, CPU architectures have seen the adoption of
RISC-based architectures, such as ARM, and ongoing with RISC-V, and
big.LITTLE architecture, where a chip packs few high-performing cores
with a large amount of slower energy-efficient cores (common in the
mobile space for more than a decade). Despite energy consumption
being a relevant topic for the silicon chips industry in the past years,
CPUs have only seen incremental improvements in energy efficiency.

Large improvements in the energy efficiency of the hardware in
HPC centers have revolved around the use of application-specific hard-
ware, such as GPUs, which with lower power budgets enhance the
performance of specific sorts of computations, common in a broad
scope of applications that use these resources, over CPUs. A look at the
Green500 list [10], which ranks the most energy-efficient HPC clusters
worldwide, reveals that 9 systems in the top 10 rely on heterogeneous
computing nodes. These servers combine the flexibility of multicore
CPUs with hardware accelerators that are extremely efficient in exe-
cuting specific tasks, resulting in an overall lower power draw of the
system if used properly. Recently, RISC-V based hardware accelerators
are becoming increasingly popular due to their reduced design cost,
due to the open-source nature of the architecture, and increased power
efficiency, and performance over GPUs for the tasks that these acceler-
ators are designed for. The RISC-V consortium includes key players in
the HPC industry, such as Nvidia, Google, and Intel [78]. For instance,
Google and NASA are working with SiFive on the development of
RISC-V based tensor processing units to accelerate AI workloads [79].

A reliable source of data for the energy consumption of a computing
server is crucial for an accurate assessment of its carbon footprint, as
this metric largely depends on the energy consumption profile. Work
by [80] discusses the challenges of monitoring heterogeneous servers
in large-scale HPC clusters. The authors compare the functionalities of
four different frameworks for energy profiling of workloads (KWAPI,
EML, PMLib, and ECTools) with a proposed framework (BEMOS),
highlighting their strengths and shortcomings. This analysis emphasizes
the fact that accurate power measurement, and consequently power
prediction models, in such systems is challenging, as current hardware
architectures provide limited access to these metrics. External factors,
such as air temperature, humidity, and cooling systems of data centers
also have a significant impact on power draw.

A study on the power consumption of the Summit high-performance
computer at component-, node-, and system-level by [37] highlights
the energy consumption irregularity of HPC applications. The authors
identify that specific workloads led to large power swings, ranging
between 4MW and 7MW in a period of just tens of seconds, which
restricts the use of aggressive power management techniques since
the factors affecting energy consumption cannot be easily monitored
and/or predicted. According to this work, better energy-aware man-
agement of the computational resources should be achieved through
more accurate prediction models built using a larger amount of server
and system properties, which require more hardware instrumentation,
higher polling rates, and monitoring frameworks that scale better while
maintaining minimal operating overhead.

4.2.1. Monitoring and management
There have been several studies focusing on the dynamic power

management of the two main components in heterogeneous servers:
the CPU and the hardware accelerator. While historically most efforts
tackled the energy consumption of multicore CPUs, recent work is
applying similar heuristics to GPUs, which is the most common type
of accelerator in high-performance computers.

The work by [81] proposes a workload queueing model that dynam-
ically manages the energy consumption of the CPU, with the goal of
minimizing the average power draw of a server in a given time period.
The author compares two heuristics to control the clock frequency

of the CPU, using DVFS to modify the CPU core voltage, one that
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updates the clock frequency between the execution of workloads, and
another that changes this frequency during the workload execution.
This analysis shows that using adequate power management heuristics,
it is feasible to decrease the average energy consumption of a multicore
CPU while minimizing the average task response time over a CPU with
a constant clock speed. However, this analysis does not account for the
power draw of the whole server, which, if considered, may mitigate the
efficiency gains on the CPU.

Work by [82] combines a similar DVFS-based tuning approach with
Uncore Frequency Scaling (UFS), which affects the speed and energy
consumption of the memory hierarchy and CPU interconnections, for
more fine-grained control of the system. The authors use a neural
network to forecast the energy requirements of workloads and to ade-
quately tune the core and uncore frequencies. While this study shows
an efficiency improvement of 16%, and a 2x improvement over the
static tuning of the system, the authors only used standard benchmarks
to train the neural network and evaluate the proposed approach. An
analysis is yet to be performed with real workloads. Additionally, the
neural network requires a set of CPU hardware counters that is often
only available on Intel chips.

As stated previously, most DVFS-based power management heuris-
tics resort to CPU hardware counters, which vary significantly between
chip manufacturers, that can be accessed through libraries such as
RAPL. The effectiveness of these heuristics is limited by the accuracy
and frequency of the energy measurements. Since most work focuses
on x86 Intel CPUs, work by [83] attempts to provide an extensive
description of the core frequency transition delays, workload-based fre-
quency limitations, and impacts of I/O die P-states on the performance
of memory on the AMD Zen2 microarchitecture. The authors provide
a set of guidelines for developers and system administrators to utilize
these chips in the most efficient way. However, a key takeaway of this
study is that AMD’s RAPL should be avoided as it provides inaccurate
energy measurements of the CPU. DVFS libraries should be avoided in
these CPUs if they rely on RAPL, as inaccurate energy measurements
will lead to less-than-ideal tuning of the chips.

These heuristics were used by [84] on the power management of
Intel and AMD CPUs, proposing a library that dynamically adjusts
GPU hardware states to minimize the average power draw over a set
of kernel executions. The authors use statistical methods to extract
kernel execution patterns within an application, attempting to predict
the behavior of these kernels based on a history of previous. While
the authors use a comprehensive list of benchmarks, from memory- to
compute-bound code, with best case energy savings up to 25% for a
2% performance drop, the effectiveness of this approach is yet to be
tested with real applications. Additionally, as seen in other approaches,
the quality of the GPU tuning is dependent on the accuracy of the
kernel predictive model. AI-based models could be used to improve the
accuracy of the predicted behavior of the kernels, leading to a more
efficient hardware configuration.

A framework for multi-objective optimization is proposed in [85],
in which the goal is to minimize the power consumption of CPU
devices while maintaining reasonable performance. It operates during
application runtime, where it attempts to build an energy model for the
workload and resources by applying several energy constraints through
power capping (limiting the resources power draw, which is managed
using DVFS) in an initial phase of the application execution. The power
capping is adjusted dynamically to maintain adequate performance,
based on the data gathered in the exploratory phase, to achieve sig-
nificant energy improvements with minimal performance losses (up to
50% with execution times increasing less than 10% for most test cases).
This work was extended to tackle NVidia GPUs in [86], using a similar
approach, with percentile energy savings very close to the performance
losses. However, this work does not tackle applications with highly
irregular workloads, as the energy-performance model is only updated
in the initial phase of an application execution.

In [87], the authors demonstrate that Fugaku possesses several
power control features, and by efficiently coordinating these features
with the application’s characteristics, it is feasible to achieve superior
10

energy efficiency at the system level.
4.3. HPC applications

Although users are usually unaware of the effects of executing
their compute jobs, they should be responsible for their workload
submission, and its characteristics. Therefore, users must be conscious
of the scientific applications they plan to use, for example, by taking
full advantage of parallelism available for specific applications, or by
choosing the most efficient programming languages [88], libraries, and
algorithms available for their work, a crucial point for developers.

In his experiment [89], Portegies Zwart executed an algorithm using
nearly a dozen programming languages, and he discovered that Python,
one of the most commonly used languages, required significantly more
time to execute, thereby generating greater carbon emissions compared
to languages like C++ and Fortran. This is related to the two-language
problem, where many scientific codes are prototyped in a slow but
flexible language (to test an idea quickly) but then have to be moved to
a faster but less flexible language for practical, scalable, and optimized
applications. However, with the increasing effort in compilers and
better-optimized codes [90] it is possible to have faster and more
sustainable Python codes than C++ and Fortran while being simpler
to understand and use. Another approach is the use of more mod-
ern languages that try to tackle the two-language problem, such as
Julia [91].

The minimization of energy consumption in parallel code through
adequate scheduling of workloads has recently been studied. Work
by [92] proposes a scheduling policy for work-stealing intra-application
schedulers that minimizes energy consumption with a limited negative
impact on code performance. While traditional schedulers attempt to
predict the execution time of tasks to properly assign them to compute
units, this approach predicts the energy consumption per task after an
initial set of measurements. This approach provides energy savings up
to 40% with negligible impact on performance on select benchmarks,
but its applicability to irregular workloads is debatable.

The matrix chain multiplication on GPUs is fundamental for vari-
ous scientific fields, such as computer graphics, physics, and machine
learning. Although its time performance has been widely investigated,
optimizing its energy efficiency has received less attention. In [93],
the authors introduce transformations for energy-efficient accelerated
chain matrix multiplication (TEE-ACM2), which can save up to 10%
energy.

The simulation of multi-scale flows in weather and climate modeling
poses a significant challenge in meeting time-to-solution requirements
while adhering to energy budgets, without compromising the appli-
cation’s accuracy and stability. The ESCAPE project [94] identified
algorithmic motifs and developed prototype implementations on dif-
ferent hardware architectures with varying programming models. The
project’s resulting energy and time-to-solution measurements mean that
there should be a focus on utilizing all accessible resources in hybrid
CPU–GPU arrangements.

The improvement of the energy consumption of applications may
often require a complete redesign of their architecture. The authors
of [95] present such a case, where a stencil-based CFD code had to be
modified significantly to adequately use the memory hierarchy while
avoiding excessive synchronizations among CCDs in the AMD Rome
microarchitecture. The authors show that a data-centric approach to the
code design of memory-bound applications can significantly improve
performance and reduce energy consumption, by factors of 9×-10× for
the test case presented. A data-centric approach was also employed
by [96], where transformer inference was optimized for ARM CPUs,
resulting in performance improvements of up to 8× while maintaining

the same energy consumption.
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Table 3
Energy and computational efficiency metrics of recent supercomputers when executing synthetic benchmarks.

Name Year Center GPUs per
node

Top500
(MW)

HPL
(PF/s)

HPL
(GF/W)

HPCG
(TF/s)

HPCG
(GF/W)

Avg. Power
(MW)

K 2012 Riken 0 12.7 10.5 0.8 602 0.05 12
Titan 2012 ORNL 1 9 27 3
Summit 2017 ORNL 3 10.1 148.6 14.7 2926 0.29 5-6
SuperMUC-NG 2018 LRZ 0 3 19.5 6.5 207.8 0.07 2
Frontera 2019 TACC 0 23.5 3.9 6
Fugaku 2019 Riken 0 29.9 442 15.4 16 004 0.53 21
LUMI 2021 CSC 4 6 309 51.4 3408 0.57
LUMI-C 2021 CSC 0 1.2 6.3 5.2 103 0.09
CEA-HF 2021 CEA 0 4.9 23.2 4.7 341 0.07
Frontier 2022 ORNL 4 22.7 1194 52.2 14 054 0.67
Leonardo 2022 Cineca 4 5.6 175 32 2566 0.46
Henri 2022 Flatiron Inst. 8 0.031 2 65.1
4.4. Discussion

Table 3 lists metrics related to energy and computational efficiency
of several recent supercomputers. The values align with the latest
TOP500 list at the time of writing [9]. The latest column reports the
average power of the machine in normal usage, running users’ HPC
applications.

Energy efficiency has been greatly improved (x10 over the last ten
years) but at the expense of greater system heterogeneity with the
generalization of accelerators (e.g., GPU) and the increasing ratio of
GPUs per node (8 in the current Green 500 top supercomputer, Henri).
A look at the LUMI supercomputer also presents this behavior, as shown
in Table 3: LUMI-C, a subcluster using CPUs only, is around 10x less
efficient in terms of floating point operations per watt in the High-
Performance Linpack (HPL) and High Performance Conjugate Gradients
(HPCG) benchmarks than LUMI, which uses 4 GPUs per server.

As previously stated, Fugaku has various power control features,
and for the Top 500 list, they use their Boost mode, while Normal
mode was used for Green 500. The result is that the HPL benchmark
is 10% slower but consumes 4% less energy. All jobs executed in LRZ
SuperMUC NG under BSC Energy Aware Runtime (EAR) [57] report
that, when using a MIN_ENERGY_TO_SOLUTION policy while execut-
ng memory intensive applications, a reduction of energy consumption
f up to 8% can be obtained. The use of the READEX Tool Suite [97]
n a set of applications and benchmarks, which are parallelized with
penMP and/or MPI, achieves energy savings of up to 34% by applying
ardware and runtime parameter tuning.

As we can see in Table 3, the average power of the machine in
ormal usage, running users’ HPC applications, is considerably less
han the peak power running HPL benchmark for TOP 500. As such,
here is an ongoing discussion on the real meaning of the Green500
etric, as it is based on running a synthetic benchmark, HPL, that is
ot representative of most modern HPC applications. Moreover, several
odern supercomputers during normal usage, apart from periods to run

enchmarks for acceptance and Top500, use energy restrictions tools to
imit energy consumption with minimum performance degradation.

The HPL is a highly optimized library for linear algebra computation
sed as a benchmark by the Top500, as it is capable of reaching close
o the theoretical performance cap of most computing resources. How-
ver, this library is so compute-bound that it does not represent the type
f applications typically executed in HPC systems. Since discussions
round the real-world value of HPL have become more prominent in the
ield [98], HPCG was introduced as a benchmark more representative of
eal HPC workloads due to its memory-bound behavior. The difference
etween these benchmarks is evident by looking at peak performance
nd flops/Watt in Table 3. The large ratio of flops/byte of HPL is
ranslated into a high flop/watt when compared to HPCG. However,
hese peak values are not representative of the normal usage of a HPC
enter, with the real performance and energy consumption being more
nline with the measurements from HPCG. Finally, these benchmarks
onsider utilizing all the computing resources of a supercomputer,
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leading to an inflated energy consumption of the system. Such high
resource utilization very rarely happens in these systems.

Developers must consider the energy efficiency requirements of an
application from its design phase. The power draw of an application
depends on the programming languages used, the efficiency of third-
party libraries, parallelization mechanisms, workload schedulers, and
the know-how of the underlying hardware architecture. Authors of [68]
showed that even within the same library, different parallelization
mechanisms that achieve similar goals may have very different power
draws.

Most job/task scheduling techniques presented in the previous sub-
sections to minimize the system power draw, either at the hardware or
software level, rely on measuring the energy consumption of workloads
to model the scheduling of tasks. Measuring the power draw of the
whole system is unfeasible as it requires specialized hardware, which
means that these approaches rely on third-party libraries, being RAPL
the most popular. However, as indicated in Section 4.2.1, RAPL does
not have access to the same components across servers (CPU, memory,
storage, etc.), and the information reported in several CPU architectures
is inaccurate, reducing the precision of the predictions and leading to
sub-optimal workload scheduling. The task scheduling is performed by
optimizing a multi-objective function that combines a minimization of
the execution time and energy consumption. Several multi-objective
metrics have been proposed, from which the Energy Delay Product
(EDP) group of metrics [99], originally used in energy optimization
of electronic circuits, are the most popular. EDP combines the energy
consumption E over the execution time D of a task by multiplying
these two factors (𝐸𝑥𝐷). This metric considers E and D to be equally
important, but a generalization has been proposed to increase the
weight of the execution time by n (𝐸𝑥𝐷𝑛). Most energy-aware task
schedulers, especially on in-application scheduling, use a variation of
EDP, where the weight of E and D is adjusted according to the target
use case.

In the topic of energy management, there is a trend to deal with
energy and computing resource management in a more coordinated
or cooperative way. Many authors attempt to use workload shifting
through job scheduling policies and algorithms to reduce energy costs,
and enhance the integration of RES or minimize the indirect carbon
emissions, in which the recent carbon-aware computing concept stands
out. Carbon intensity data is becoming more valuable, with clear
applications in the computing sector. It is important, however, to be
aware of specific HPC characteristics (high utilization rates, resource
management capabilities, SLAs) that could limit the applicability or
effectiveness of these techniques.

5. HPC services, business models and policy

This section addresses the digital services provided by HPC cen-
ters, from both the perspective of the service provider and the user.
Furthermore, an overview of the recent initiatives on policy and stan-
dardization and its reflection in funding opportunities and research
projects is made, as well as on standard and cross-sector business
models that link computing and energy resources.
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Fig. 3. The factors and relationships that affect the Digital Service provided by HPC
centers.

5.1. Digital service

HPC centers generally provide access to high-performing compu-
tational resources and expertise to academia, industry, and govern-
ment users, with the goal of accelerating their research activities.
The services provided usually range from access to high-performance
computing, storage, and efficient software, technical and consulting
support, and training in the use of computing resources. The type of
digital service provided varies among HPC centers and depends on their
infrastructure, policies, and business models.

Fig. 3 illustrates the relations among the different factors, both user
and infrastructure-driven, that influence the digital service provided by
the HPC centers. The type and properties of the workloads, such as
complexity, limitations, and requirements of specific hardware (such as
GPU acceleration), directly impact their performance in HPC systems.
The architecture and computing resources of supercomputers must
be designed to accommodate the needs of the target workloads, and
in turn also affect the service provided. The quality and quantity of
these resources determine the capacity of the system to handle a large
number of users and workloads, and, consequently, the availability and
performance of the service. Funding is possibly the most influential fac-
tor in the digital service provided by HPC centers. Inadequate funding
leads to less performing and/or specialized hardware and understaffing,
which decreases the quality and availability of the provided service.

5.1.1. Service providers
The work in [100] concluded that although carbon emissions are

already publicly reported by many entities, there is still room to im-
prove on carbon accountability and reporting to develop fully sustain-
able computing systems. The authors also state that researchers and
developers should make carbon footprint a first-class design metric.

Actions that aim to improve the sustainability of a computing
center have to account for an important aspect: a computing center
provides crucial digital services to its clients. This means that service
providers usually have a commitment with their users, in which they
can expect a certain quality and availability when using the requested
service, by offering SLAs with legal implications [101]. By managing
resources to assure that SLAs are fulfilled, strategies for sustainability
can be somehow restricted in their implementation. Authors of [101]
discuss the advantages of negotiating SLAs in the HPC environment
and the effect it can have on both users and service providers, while
also addressing the differences between per-job and long-term SLAs.
Another example of the specificity of SLAs for HPC is long-running jobs,
which could mean that users could require a policy for guaranteed job
completion [102].

Regarding sustainability, the concept of Green Service-Level Agree-
ments (Green SLAs) [103,104] is a way for users themselves to guar-
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antee that their computing workload execution meets some kind of
sustainability-related performance indicator. This can be achieved, for
example, by establishing a minimum percentage of RES when executing
a certain workload.

5.1.2. Users
Users of HPC resources are mostly composed of researchers and

industry practitioners in certain fields of science. The research commu-
nity is largely dependent on computing systems for the development
of their own scientific work. Typically, researchers take advantage
of large-scale resources available in HPC or traditional data centers,
either on-premise or in cloud service providers. The common steps for
an HPC user using the service are the following: Copy data (copying
their data into the cluster storage), Preparation (compiling specific
applications/modules, and creating a script to automate the execu-
tion), Execution (submitting the computational pipeline to the cluster
for batch execution), Analysis (analyzing output data locally and, in
most systems, interactive sessions for analysis and visualization), and
Retrieval of data (retrieving the relevant results).

Researchers and other HPC users usually have little to no visibility
or concerns on the impact that their work has on power consump-
tion [105], and the consequent operational and environmental costs.
Furthermore, their carbon footprint goes well beyond their computing
needs and extends to their overall research and working practices. Ten
simple rules to incorporate sustainable research in the agenda of the
scientific community are indicated by [106] and include efforts for
remote participation, avoiding duplicate work, and efficient carbon
footprint reporting. Other contributions include the adoption of open
science practices [107].

These facts are even more relevant in fields of science that show a
high demand for computing resources for their core research, such as
bioinformatics, computational fluid dynamics, and AI, among others.
Many fields that intensively use resources and, therefore, contribute
to climate change, are also active contributors to solving challenges
in the energy sector through their scientific output. Fields related
to weather forecasting and resource assessment for different energy
sources, simulation, and development of advanced materials for inno-
vative technologies, and modeling and optimization of energy systems
are an example of this paradox [108].

The recent advances in AI led to important contributions to society,
but with the cost of training increasingly large models that need spe-
cialized hardware, and large amounts of computing power for extended
periods of time. The need for more powerful solutions than single-GPU
setups has become evident. As a result, there has been an increasing
convergence of AI and HPC, with the use of HPC systems for developing
and deploying accelerated AI algorithms in both academia and industry
settings [109]. This field has grown awareness of its carbon footprint,
with emerging concepts such as Green AI [110]. The mentioned work
focuses on computational cost and efficiency as an evaluation criterion
in a field dominated by accuracy measures and recommends floating-
point operations as a standard metric while assessing other possible
metrics. Although the impact of AI in carbon footprint is indisputable,
work by [111] recently proved that several authors have been overesti-
mating carbon emissions of machine learning workloads, and described
some best practices in the field. For machine learning projects, tools
like CodeCarbon allow carbon accounting and reporting, improving
reproducibility and avoiding duplicate work.

The carbon footprint of computing systems can be improved if users
are aware of the impact of their work and if they feel motivated to
participate in behavioral change through incentives. This depends on
how computing and resource management systems are designed, how
these systems interact with users, and how providers develop their com-
puting ecosystems and billing processes. Awareness of environmental
sustainability can be enhanced by informing users of how computing
impacts power consumption in different periods. However, even if HPC
users want to run their applications in favorable periods, they have very

limited possibilities, as resource managers are the responsible entities
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for allocating resources and scheduling the execution of a specific
workload.

Nonetheless, users can be targeted with incentive mechanisms that
aim to optimize the use of resources or to minimize the impact of
its utilization, by providing more details to the resource management
system or by changing behaviors that favor the operation of the system.
For example, the submission of workload could include the flexibility
that users have regarding their deadline, and their runtime estimates.
This would allow shifting the execution of workload to periods that
contribute towards optimizing a specific objective for the computing
center, and users could be compensated.

Incentive mechanisms can be implemented using credits or direct
discounts when billing the use of resources in large computing systems.
In [112], a parameterized model was designed to assess the changes
in energy consumption as a result of frequency scaling techniques and
to evaluate if the benefits for the HPC facility and its users were
reasonable. The authors evaluated multiple pricing schemes, conclud-
ing that novel pricing schemes and energy accounting tools for users
are needed, with promising preliminary results. In [113], the authors
propose EnergyFairShare (EFS), which manages the energy budget
of a supercomputer by prioritizing users with less energy-intensive
computing jobs. This encourages users to target energy efficiency when
developing code, ultimately leading them to reduced queuing and
turn-around times.

Moreover, incentive mechanisms can contribute to the systematic
reporting of sustainability metrics (such as carbon footprint) in sci-
entific publishing, with journals partially waiving publishing fees, or
granting some certification or badging for these publications. It is im-
portant to track the contribution of computational research to climate
change to stimulate greener algorithms. Green Algorithms [114] is an
open-source platform to calculate the estimated carbon footprint of sci-
entific large-scale computation with a simple methodology considering
the characteristics of different resources that require energy (processor,
memory, overhead of computing facilities) and geographical location.
The authors stated that scientists are usually unaware of their carbon
footprint and indicated that the main challenge is to perceive the
reporting of sustainability metrics as a prevailing practice, which could
be included in scientific publications. Other tools and frameworks exist
but are usually directed to individual computing.

These interaction mechanisms between providers and users can be
limited by many factors. When implementing energy efficiency and
management strategies, there is the possibility that the overall service
provided is being affected via job scheduling, job-level management,
or resource-limiting strategies, which can ultimately impact users’ job
deadlines or wall time. Therefore, sustainable practices can affect the
overall performance, deteriorate the quality of service, or impact SLAs.
If Green SLAs are deployed, then energy management strategies that
aim to fulfill those SLAs can be designed. Furthermore, HPC infras-
tructures and their resources can be shared or preallocated for specific
users, projects or entities. This means that there can be a part of
the physical resources (e.g. a certain percentage of nodes) that are
dedicated to an entity or that have to be available in specific periods
or even different queues available for submission. Also, knowledge of
the implemented scheduling policies is essential, as priorities on job
scheduling can be established. This not only affects the flexibility and
effectiveness of resource management strategies, but also the utilization
rates and overall efficiency of the infrastructure.

5.2. Policy and recent initiatives

In recent years, multiple efforts for policies and standardization
on sustainability measures in computing centers have been made by
regulators and international standard organizations.

The European Green Deal stated that data center is one of the
sectors where energy efficiency and circular economy measures will be
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implemented, while the European Union Digital Strategy mentioned the
goal to achieve carbon-neutrality in this industry by 2030 [115]. The
European Processor Initiative deals with implementing a roadmap for
low-power European processors for extreme-scale computing, and other
emerging applications.

The EuroHPC initiative, a joint initiative to develop the supercom-
puting ecosystem in Europe, demanded [116] that the design and oper-
ation of supercomputers supported by the Joint Undertaking must con-
sider plans regarding energy efficiency and environmental sustainabil-
ity. The Partnership for Advanced Computing in Europe (PRACE) [117]
offers computing resources and services to foster scientific discovery
and engineering research in Europe, and indicates that one of its goals
is to reduce the energy consumption and environmental impact of the
European HPC ecosystem, by developing tools and training users to
adapt to technological changes in this field. The European Technology
Platform for High Performance Computing (ETP4HPC) [118] includes
in its structure a Working Group on Energy Efficiency that focuses on
the global-level approach to the energy efficiency of HPC systems and
regularly organizes workshops on this topic.

Other initiatives include the Energy Efficient HPC Working
Group [119], with funding from the US Federal Energy Management
Program, created to promote energy-efficient computing guidelines
and to improve the design and operation of HPC systems regarding
its energy performance, and a yearly document released by the Joint
Research Center on the Best Practice Guidelines for the EU Code of Con-
duct for Energy Efficiency in Data Centers [120], to assist operators in
implementing measures to improve energy efficiency in their facilities.
The Master List of Energy Efficiency Actions, provided by the Center of
Expertise for Energy Efficiency in Data Centers, is a document that also
lists some best practice recommendations to address data center energy
efficiency, mainly as a reference and for guiding operators [121].

A report [122] by the Center on Regulation in Europe focuses on
regulation and policy recommendations regarding the participation of
data centers in the European energy system, due to the rising comput-
ing needs in the context of the European Climate Law. According to the
authors, energy efficiency improvements in recent years were able to
partially mitigate the effects of the increasing computing demand on
the electricity demand of this sector, and future energy consumption
trends are uncertain. Regulations specifically for data centers are likely
to occur with respect to energy efficiency and its overall integration
in the energy system (providers of energy flexibility, integration with
district heating networks), and current directives such as Ecodesign,
Energy Efficiency, EU Green Public Procurement, and Energy Taxation
Directive should be leveraged to encourage harmonization and be the
basis for further regulation on sustainable practices that contribute to
the European energy transition. The authors conclude that a dynamic
regulatory approach should be preferred for data centers, with a com-
bination of legal instruments, such as standards, guidance, legislation,
and self-regulation mechanisms.

A recent report [123] argues that sustainability requirements for
computing centers are mostly voluntary and that they will probably
become mandatory in the near future. Also, the report indicates that
operators should start preparing for net-zero commitments, while off-
setting mechanisms and RES certificates are becoming less acceptable
in favor of on-site RES generation.

Efforts for standardization are also increasing for computing cen-
ters. The series of standards ISO/IEC 30134 discusses the need for
KPIs specifically for data centers and their standardization, while the
ANSI/ASHRAE standard 90.4-2019 established the minimum energy
efficiency requirements for the design and operation of data centers,
including the use of RES. The ASHRAE Technical Committee 9.9 is also
concerned with data centers and other technology spaces and facilities.
Leadership in Energy and Environmental Design (LEED), established
by the US Green Building Council, represents a set of rating systems
(Silver, Gold, and Platinum) for the design, construction, operation,
and maintenance of green buildings. Achieving LEED for data centers
is difficult and thus LEED data centers are surprisingly rare, with fewer

than 5% of all US data centers with LEED certification.
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Table 4
Research projects.

Project (Year) Scope Outcomes Ref.

HEROES
(2021–2023)

Aims at developing an innovative platform to
allow end users to submit their complex
simulation and ML workflows to both HPC and
Cloud data centers.

Possibility to choose the best option to achieve their goals in
time, within budget, and with the best energy efficiency.

[127]

Montblanc
(2017–2021)

Low-power processors for exascale HPC based on
European technology.

Developed IP for low-power servers, methodologies for
processor simulation, and virtual prototyping. The second
generation of processors was planned for 2022 with a power
efficiency of 50 GFlops/W.

[128]

ESCAPE
(2015–2018)

Energy-efficient SCalable Algorithms for Weather
Prediction at Exascale.

By modifying numerical algorithms and using new
programming models, substantial improvements to weather
and climate predictions were possible and affordable.

[129]

READEX
(2015–2018)

Increasing energy efficiency in exascale HPC
systems by optimizing available resources and
adjusting system parameters to specific application
requirements.

Built software packages and a run-time system using an
automatic optimization approach that leverages the dynamic
behavior of HPC applications to switch parameter
configurations on exascale systems.

[97]

ANTAREX
(2015–2018)

Solving challenges of exascale computers to
increase energy efficiency by implementing a
holistic approach spanning all decision layers of
software stack management.

Provided a Domain Specific Language, libraries, and dynamic
autotuning frameworks for runtime management of
applications.

[130]

ECOSCALE
(2015–2019)

Improving the performance of exascale computers
to meet energy efficiency goals, relying on scalable
programming environments and hardware
architecture tailored to future HPC applications.

Provided an energy-efficient architecture, programming
model, and runtime system, which resulted in a working
prototype and simulator to run real-world HPC applications.

[131]

ADEPT
(2013–2016)

Address the challenge of energy-efficient use of
parallel technologies.

Integrating performance and energy consumption modeling
for HPC and embedded systems. Specialized benchmarks
have been developed to provide detailed insights into how
systems utilize energy and power.

[132]

EXA2GREEN
(2012–2015)

Energy-Aware Sustainable Computing on Future
Technology – Paving the Road to Exascale
Computing

A software tool able to trace and analyze the power and
energy consumption of parallel scientific applications and
energy-efficient algorithms. A new type of internal power
meter for individual hardware components (CPU or memory).

[133]
5.3. Funding opportunities and research projects

The effect of recent policy and decision-making is also reflected in
funding opportunities and research projects. For example, the European
Union decided to address the challenges of exascale [124], and has
been funding research initiatives in the last decade related to hardware
design, software, and other key areas. Table 4 describes the scope and
outcomes of funded research projects related to the review in the last
decade. It is clear that most projects dealt with energy efficiency in the
last decade, in particular, to address the many challenges posed by the
exascale paradigm.

Forming part of the United States’ Exascale Computing Project, the
HPC PowerStack collaboration, joining experts from academia, research
laboratories, and industry, aims to design a holistic, extensible power
management framework [125]. The project aims to develop a cross-
pillar system for power management within HPC that utilizes intelligent
techniques to improve decisions related to scheduling, hardware and
software.

The Strategic Research Agenda from ETP4HPC [15] contains the
priorities of European research in HPC technology and identifies two
new challenges for HPC, one of them being Sustainability. As the
authors state, while HPC center capacities constitute only a subset
of the entire data center, they are also growing. Therefore, actions
are needed to reduce their carbon footprint, reduce their use of rare
materials for the production of hardware components, increase the
lifetime of systems, reduce electronic waste, and introduce the scheme
of a circular economy.

EuroHPC JU has an open call, HORIZON-EUROHPC-JU-2022-TECH-
03 [126], that aims to create a large-scale European initiative for
the HPC ecosystem, with one of the expected outcomes being the
development of energy-efficient high-end processors and accelerators
utilizing RISC-V components.
14
5.4. Business models

Traditionally, HPC business models focus on offering services re-
lated to users accessing its computing resources. This section deals
with innovative business model opportunities that can arise within the
HPC ecosystem. A report by [134] on the future of supercomputing
concluded that, although the public sector (universities, research cen-
ters) is the main driver for financing and usage of HPC, centers are
creating new revenue streams by broadening their scope to commercial
and industrial users. This recent approach accelerated access to HPC
resources in many industries, contributing to the digitization of the
economy, and fostering innovative business models that enhance the
financial sustainability of HPC centers.

As previously stated, the energy and computing sectors are increas-
ingly interdependent. In HPC, that dependency is visible because it
directly impacts costs and carbon footprint, as available computing
power and electricity costs rise. Moreover, the HPC industry deals
with thermal energy and large volumes of data, which can offer new
opportunities. Therefore, innovative business models that include both
energy and computing resources can be relevant to the environmental
and financial sustainability of computing infrastructures.

5.4.1. Computing
HPC cloud computing or HPC as a service (HPCaaS) uses cloud

resources to execute HPC applications [105], and the adoption of these
solutions is rising, as companies realize that they can have the same
computing service without the CapEx and complexity associated with
investing in and managing a whole infrastructure, with the ability
to adapt their computing capacity to their needs easily over time.
Work by [105] reported that the adoption of these services is more
dependent on the financial sustainability of moving applications to the
cloud (instead of maintaining a private HPC infrastructure) and the
type of HPC workload to execute (due to possible scalability issues in

the cloud). Multiple hyperscale providers (Google, and Amazon Web
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Services, among others) exist and are robust solutions to institutions
that need large computing resources [135,136].

HPC resources can also be traded in decentralized peer-to-peer
networks, and even in marketplaces based on blockchain technology.
The iExec project [137], for example, offers a platform where com-
panies and individuals can make available IT resources in exchange
for tokens for executing tasks for applications. Hypernet Labs [138]
is implementing a decentralized computing marketplace where the
first resource provider is an HPC system from Exaion, provided with
low-carbon electricity.

Ultimately, HPC business models can be characterized by the way
that its end users pay for access to computing resources. In the specific
case of academia, a survey by [139] found roughly four (library,
shareholder, cost center, and industry collaboration) that operate with
different revenue streams.

5.4.2. Cross-sector opportunities
The location of a HPC center is key to the overall carbon footprint

associated with the offered service, due to regional differences in
weather conditions and energy mix available [140]. By taking advan-
tage of sites with better conditions for free cooling and availability of
RES, there is an increasing offer of sustainable HPC services in those
sites, such as [141] and [142].

One of the most addressed business models for data centers in the
literature is energy flexibility as a service. Extensive work is available
in assessing data center energy flexibility and their potential for par-
ticipating in demand-side management programs. The spatio-temporal
workload shifting techniques can be seen as implementing demand
response [16]. Work developed by [143] created typologies for data
centers’ business types to identify candidates for energy flexibility
services. Demand-response models for HPC systems with job scheduling
and resource provisioning schemes were developed by [144]. The
authors of [145] proposed a framework to optimize power flexibility on
an HPC system in different flexibility markets in Germany. As the pro-
portion of renewable energy sources in electric power systems grows, it
becomes more necessary for electrical grids to work together to balance
supply and demand. To address this issue, the authors of [146] suggest
using a straightforward site-wide power model, including both server
and cooling, combined with QoS-aware demand response techniques,
which increased cost savings by around ×1.3.

Revenue streams considering energy flexibility were indicated
by [147], as data centers can simultaneously participate in electri-
cal, thermal, and data networks. It stated that the potential of these
facilities comes from the high energy consumption, high automation
levels, and the nature of their hardware and workload. The authors
considered the capture of waste heat, thermal storage, integration of
RES, energy storage, workload shifting, and participation in demand
response programs to provide optimization techniques that exploit a
data center’s energy flexibility.

Due to its high energy consumption and need for a reliable source
of electricity, HPC systems can be partnered with their electricity
service providers. In [148], the authors surveyed the top supercom-
puter facilities in the United States and concluded on the importance
of engaging in demand response programs and providing demand
forecasts to increase the reliability of the electrical grid. They identi-
fied job scheduling as the most interesting management strategy and
summarized current challenges and opportunities regarding the poten-
tial interactions between HPC operators and their electricity service
providers, and their participation in electricity markets. A qualitative
study of service contracts between these two agents was done by [149]
to identify imposed strategies in HPC (such as demand charges, demand
response programs, and variable tariffs) and to conclude on current and
future collaboration between entities. Lancium [150] provides services
to the electrical grid and adopted the concept of carbon negative
computing. By leveraging existing RES power plants, the company
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builds data centers that act as controllable loads near critical transmis-
sion system points usually overwhelmed by excess RES generation, to
provide ancillary services to grid operators.

Another possibility is the integration of an HPC infrastructure
within the microgrid concept. Microgrid capabilities include the man-
agement of on-site generation of electrical and thermal energy, en-
gaging in demand response programs, selling electricity or ancillary
services to the grid, and islanding to improve computing centers’
vulnerability to power outages [151]. Deploying data centers within a
microgrid can be the culmination of an integrated energy management
strategy to reach low PUE values and create new revenue streams with
enhanced reliability [144].

The revised Renewable Energy Directive (2018/2001/EU) and the
Electricity Market Directive (2019/944/EU) required EU member states
to provide frameworks that enable and promote the development of
RES and citizen energy communities [152], which aim to provide
social, environmental, and economic benefits to their participants. In
the context of HPC, business models can be designed so that the
infrastructure is an active member of a local energy community as a
prosumer (with computing and energy resources).

The thermal energy available as waste heat, a byproduct from the
cooling process of the HPC servers, can be interpreted as a possible
source of revenue. In Telia Helsinki Data Center [153], the waste heat
produced by the servers as a byproduct is processed with heat pumps,
metered, and billed according to open district heating network pricing.

Lake Parime [154], a digital infrastructure company, provides a
new solution (Powerbox) for both the HPC and RES sectors. The
company works with RES producers to build HPC infrastructures on-
site that take advantage of the surplus RES-based electricity to offer
computing services for HPC application users. The company indicates
that this solution avoids upfront costs of storage devices and ensures
new revenue streams, as earnings per MWh of computing services are
decoupled from electricity market prices. A similar solution is proposed
by Soluna [155], which builds small-footprint data centers to buy and
use surplus RES generation in data centers that specialize in performing
‘‘batchable’’ computing.

Another cross-sector opportunity is the actual use of HPC resources
in the energy industry, contributing to society’s overall decarboniza-
tion. The use of computational fluid dynamics in wind resource as-
sessment, the modeling and optimization of energy systems, and the
model training for RES forecasting are some computing-intensive ap-
plications and thus good candidates for using HPC as a backbone
to generate revenue [156,157]. Furthermore, the processing burden
from monitoring and controlling energy infrastructures, such as smart
grids, can be a good match for edge HPC solutions. Recently, the U.S.
Department of Energy developed the HPC4Energy Innovation initiative,
which provides funding to industry partners to use HPC resources to
advance their national energy agenda.

There are also opportunities in the data industry. Gaia-X [158] is
an initiative to create the next generation of open-source data infras-
tructure in Europe concerned with reaching high standards of digital
sovereignty, where different use cases are reported for the energy
sector. A case study for edge data centers reports how the digital and
energy sectors can be coupled by using surplus energy to generate
computing power and a new revenue stream. Specifically for HPC,
another case study proposes HPC as a service, as many potential users
do not have the means to invest in such a system, with a sharing model.
HPC services can thus be accessible to new users (academia, companies,
temporary users) and face higher utilization rates, while users remain
in control of their data.

A possible service resulting from integrating RES in HPC centers is
the emission of certificates of origin for the energy used in computing
tasks, an extension of the concept of certificates of origin. HPC users
could be aware of or even publish the share of RES or carbon footprint
associated with their scientific work. A scaled and automated version of

a tool similar to Green Algorithms (discussed in Section 5.1.2) directed
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to HPC centers instead of individual computing could be a service
provided to multiple HPC centers, to automatically send traceable
certificates of origin after a computing job, to increase the awareness of
the scientific community in this matter while providing an innovative
service.

5.5. Discussion

A review of the HPC ecosystem shows recent trends for policy,
regulation, standardization, and other efforts specifically targeting HPC
and data centers, including new agents and entities. Policy-making
processes led to research projects and funding in the last decade being
dominated by concerns about energy efficiency within the exascale
paradigm. The sector is broadening its user scope, with initiatives to
establish partnerships that join academia and industry to drive the
digitization of the economy. The sector is also broadening its scope
of applications, for example, with an increasing trend of using HPC
platforms to perform research related to AI, but also to incorporate
initiatives such as Green AI.

Enhanced interaction between service providers and users of HPC
systems can help operators optimize the energy and computing re-
sources of the facility while making users aware of the impact of
their workloads and being more active participants in the sector’s
decarbonization. However, these strategies must consider that HPC
services are less flexible than those of traditional data centers, due
to the nature of the workloads and of the service itself. Furthermore,
innovative strategies could be developed to encourage the adoption of
techniques that balance power consumption with performance since the
current accounting and billing systems are unsuitable for this purpose.

Recent examples of business models beyond HPC as a service and
cloud computing show a growing interdependency between the energy
and computing sectors, and their progress and concerns, which can
foster cross-sector opportunities that either leverage HPC to generate
new revenue streams, or further integrate these centers in energy
systems.

Overall, the HPC industry is moving towards offering a more en-
vironmentally sustainable service, by taking advantage of sites with
better conditions for free cooling and availability of renewable ener-
gies, which also allows to reduce energy costs. Although not discussed
in this section, the service provided by an HPC facility is limited to the
system’s lifetime. Current HPC systems are typically in service for five
years [159], and a discussion on their lifetime could set the trend for
its expansion (instead of consecutively replacing them with more recent
and powerful machines, even if having an improved power efficiency),
or for a second-life application. Recent work by [160] pursued this line
of research, designing a framework for carbon footprint analysis in HPC
systems, considering operational but embodied carbon footprint due
to the production of different hardware components. Although very
important to enhance performance, the authors found that hardware
upgrades can increase the embodied carbon footprint and, depend-
ing on the center’s conditions, can be hard to offset. Therefore, the
authors argue that ‘‘extending the hardware lifetime could be a worthy
ption’’. Furthermore, a lifecycle analysis in this sector could reflect
he concerns of reducing electronic waste, and introduce the circular
conomy concept. For example, green procurement practices could
e leveraged, to address the sustainability concerns of manufacturing
rocesses, transport, and other steps of developing an HPC system from
ts design phase.

. Key performance indicators

The performance of computing centers is ultimately assessed by a
ide range of Key Performance Indicator (KPI). These metrics support

he reporting of performance and overall use and management of
esources at many levels. Furthermore, metrics allow to some extent
comparison between similar infrastructures and can serve as a goal
hen designing a new computing site, and the reporting effectiveness

s largely dependent on the ability to accurately monitor multiple
esources in the facility.
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6.1. Overview of metrics

While KPIs must assess the performance of the digital service pro-
vided, these are usually associated with individual systems such as
cooling, IT, and their interdependency. In the HPC ecosystem, power
efficiency (GFLOPS/W) relates computing performance to its power
consumption, and while relevant to ranking the most efficient com-
puters in the Green500, fails to address the impact of the whole
infrastructure with many shortcomings. Historically, PUE has been
the standard metric reported when approaching energy efficiency, to
account for overhead energy consumption. However, many limita-
tions are pointed out, such as [161] lack of guidelines for calculation,
lowering PUE has become a goal itself instead of lowering energy
consumption, further improvements beyond 1.1 are difficult and dis-
regard for the source of energy, on-site energy generation, or waste
heat recovery. Some PUE values for state-of-the-art HPC centers are
available in Table 5.

Therefore, there is an ongoing discussion on what KPIs best suit
modern and sustainable computing centers [161,162] and efforts to
improve their reporting [163]. Discussions are now centered on how
to better reflect topics such as RES and energy storage integration,
carbon footprint, use of resources beyond electrical energy (e.g. wa-
ter), how waste heat is used, among others, and how to combine
them for more robust performance metrics. Some KPIs that already
address some of these concerns are, for example, Carbon Usage Ef-
fectiveness (CUE), Energy Reuse Effectiveness (ERE), and Water Usage
Effectiveness (WUE).

A thorough review of available KPIs for sustainable computing
centers is made by [164], where metrics were distinguished for differ-
ent dimensions of the system: energy efficiency, cooling, performance,
greenness, thermal/air management, network, storage, but also security
and financial impact. An extensive gathering of KPIs available for
data centers was also done by [165], which identified the name and
corresponding promoter of each metric, and stated that existing metrics
fail to have a holistic view of the data center operation. As a result, the
authors presented a multidimensional approach considering productiv-
ity, efficiency, sustainability, and operations, alongside risk, normalized
and weighted for efficient visualization by means of a scorecard. Work
by [166] proposed a holistic performance assessment of data centers,
where sustainability is seen not only as the result of environmental
protection but also as a result of economic, operational, and social
longevity.

Multiple entities are contributing towards a more standardized envi-
ronment, including defining KPIs and detailing measurement points and
techniques for a correct calculation. The series of standards ISO/IEC
30134 discusses the need for KPIs specifically for data centers and
their standardization, regarding the effective use of resources and
the reduction of CO2 emissions, which covers the definitions of PUE,
Renewable Energy Factor (REF) and other metrics. Recently the Energy
Reuse Factor (ERF) was included (ISO/IEC 30134-6:2021), as the ratio
between reused energy and the data center’s total energy consumption.
ISO 50001 is an international standard for managing an organization’s
energy performance. Lawrence Berkeley National Laboratory has imple-
mented ISO 50001 as a way to ensure its energy and water management
activities and efficiency savings are strategic, effective, and persistent.

Performance can be related to goals for which the system is being
optimized, according to some energy management strategies. This in-
cludes energy, environment, financial, and computing-related metrics.
For example, CO2 emissions, self-consumption, or self-sufficiency rate
can be important energy/environmental goals for HPC systems to focus
on, while savings in electricity costs can be a financial one.

Computing-related metrics are key to assessing the trade-off be-
tween optimizing energy resources and the performance/utilization of
the actual system or even the digital service provided (including user-
centric performance metrics). Some examples are the system utilization
rate and job wait time [167], job wall time, time-to-solution, energy-
to-solution, throughput, fulfillment of SLAs, and availability, among
others.
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Table 5
Trends in PUE of high-performance computing centers.

K Titan Summit SuperMUC-NG ESIF Fugaku LUMI CEA-HF Frontier Leonardo

Year 2012 2012 2017 2018 2019 2019 2021 2021 2022 2022
PUE 1.20–1.27 1.29 1.1 1.08 1.04 1.1 1.04 1.1 1.03 1.08
6.2. KPI monitoring and optimization

Operational data analytics (ODA) systems enable the acquisition
of real-time information in computing centers for enhanced decision-
making. The infrastructure, as indicated by [50], facilitates the con-
tinuous monitoring, storage, and analysis of performance data from a
machine and infrastructure level. This accumulated data is exploited to
optimize system operations and, ultimately, improve KPIs.

In the following paragraph a brief description of successful ap-
plications of ODA is made. The use of ONNI in meeting organiza-
tional energy efficiency performance goals for the National Energy
Research Scientific Computing Center’s HPC cooling systems is sum-
marized in [168]. The system collects and archives environmental
and performance data from IT equipment, sensors, and devices on the
HPC floor, allowing optimization of both hardware configuration and
cooling. The system architecture design and current state of the op-
erational data collection/monitoring platform being used in Fugaku is
reported in [169]. Another example is the recent generic framework to
facilitate real-time ODA on extensive HPC facilities described in [170],
providing numerous configuration options to meet the diverse needs
of ODA applications. This framework is built atop the holistic DCDB
monitoring system [171], a scalable and modular monitoring system
that can integrate data from all system levels in a distributed NoSQL
data store.

6.3. Discussion

Table 5 provides a list of recent supercomputers and information on
their KPIs to support the discussion. A set of representative centers was
chosen, which allows analyzing the evolution of PUE in recent years.

The recent improvements in technology and the adoption of energy
efficiency measures have led to a decrease in the PUE values of HPC
centers. Recent values are near 1.0, which is a significant improvement
from the PUE values of 1.7–2.0 that were common in HPC centers just
a few years ago.

Typically reported KPIs (PUE, power efficiency) are now perceived
as limited, as computing facilities grow in complexity and scale, and
concerns on sustainability rise in an industry that aims to provide the
greatest computing capability possible at any time. Metrics that better
reflect the concerns of modern and sustainable computing centers
(social, economic, technological, environmental) are being discussed
and developed, with data centers heading towards a more standardized
and accountable ecosystem on this topic.

7. Conclusions

The HPC ecosystem is expanding with the deployment of new large-
scale supercomputers in recent years (with power draw in the dozens
of MW), but also with new agents and entities that actively participate
in innovating, financing, and scaling the usage of HPC for academia
and different industry sectors, boosting the digitization of economy
and society, preparing the exascale paradigm and solving its challenges
(including energy-related). More entities are focused specifically in pro-
moting best practices and guidelines, to assist and provide training for
centers and operators in enhancing decarbonization in HPC design and
operation. The approach considered in this review showed that multiple
considerations and improvements on decarbonization are possible at
each level of the HPC service, facility, and its basic components.

As ICT in general, and HPC in particular, gets more accessible and
widens their user scope (namely from academia to industry), the usage
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of scientific applications within a HPC environment is set to increase,
with researchers solving more and more complex problems with super-
computers. It was also shown that users, and not only service providers,
actively affect the environmental impact of such systems, through the
submission of jobs, or when designing and writing code for the executed
applications. Therefore, there is a need for improved mechanisms that
enable interaction between providers and users to optimize resource
usage, and that target specifically HPC, due to additional constraints
that traditional data centers do not experience.

The survey on industry trends revealed that, although comput-
ing power has been increasing, current concerns about energy usage
go well beyond energy efficiency gains at the hardware level. The
cooling technology and its operation have been improving consid-
erably, enabling PUE values that are now trending towards unity.
HPC centers are diversifying and decarbonizing their energy mix by
deploying distributed energy resources, namely using RES, or using off-
site generation and carbon offset mechanisms to ensure their power
supply. Centers are also using their energy infrastructure to provide
additional revenue streams, such as heat distribution through district
heating networks. It was found that multiple opportunities exist for
centers to explore their energy resources further, but also to improve
their integration in energy systems and participation in the energy
transition. Multiple business models can be designed to address these
opportunities while dealing with both energy and computing resources,
enhancing the financial viability of these centers in a scenario of rising
energy costs. HPC is, therefore, an important pillar in the growing
interdependency between energy and ICT infrastructures.

The highlights of the Supercomputing Conference 2022 reported by
HPCWire [172] revealed several trends that are also reflected in this
work. The speakers and panelists discussed how the sector is shift-
ing from PUE and power efficiency metrics towards integrating RES,
managing waste heat, and reducing energy costs and carbon emissions.
HPC facilities can depict the electrical grid not as an obstacle, but as
an asset, and workloads can be shifted in time and space, although
with concerns on data sovereignty. Recently, Fugaku turned off 30%
of its nodes for several months due to energy costs causing a financial
crisis [172]. Ultimately, this means that energy usage and its associated
costs can directly limit scientific research and progress in many fields of
science, which are constrained not only by the availability of computing
resources but also by the costs of keeping them operational.

The advent of exascale computing increases the complexity of op-
erational challenges in HPC systems of large-scale and dynamic na-
ture [50], and the coupling of power and cooling is driving the adoption
of ODA frameworks, leading to the collection of extensive amounts
of historical data not only from workload information and different
usage metrics but also from the supercomputer and facilities’ metrics.
The analysis and exploration of these data, boosted by AI techniques,
would allow for a more efficient operation and tackle the challenges of
integrating local RES and energy storage technologies.

Currently, most HPC platforms, both academic and industrial, are
on-premise. However, a report by Hyperian Research states that while
the on-premise HPC market is growing at 7% a year until 2024, the HPC
cloud market will grow at 17% a year. The recent increasing usage rate
in HPCaaS, can help in having more sustainable high-performance com-
puting. This will be possible not only by taking advantage of HPC Cloud
sites with better conditions for free cooling and availability of RES
but also by similar to what is already being done in traditional Cloud
Computing, using spatio-temporal workload shifting with regional grid
carbon intensity as a signal [173].
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Energy consumption has been a priority for the silicon chips indus-
try in the past years. Particularly, the adoption of RISC-based architec-
tures such as ARM and ongoing with RISC-V allowed a considerable
increase in performance per watt. However, the energy efficiency in
supercomputers has been greatly improved at the expense of greater
system heterogeneity with the generalization of accelerators (e.g., GPU)
and the increasing ratio of GPUs per node. This led to GPUs being
commonly used not only to speed up the training of machine learning
algorithms, but also to execute large, parallel processing jobs for a
broad spectrum of scientific and engineering applications.

The key findings from this study can have relevant implications
for different areas. From an engineering perspective, the design of
new HPC centers must account for efficiency from the building level
(power architecture and supply), to the sizing and arrangement of
the energy (generation, storage, cooling/heating) and IT infrastructure,
down to choices at component-level that can enhance environmental
performance, taking advantage of ongoing advances in computing ar-
chitectures. From an energy systems perspective, HPC systems pose
challenges in their integration in the electrical grid due to large power
consumption and fluctuations, but also offer opportunities to foster its
resilience and decarbonization, for example by using distributed energy
resources and depicting scientific computing workloads as controllable
loads to provide flexibility. Regarding the decarbonization of the HPC
sector, there is a need for clearer metrics and concrete targets, which
requires changes in policy and regulation, namely to clarify what key
performance indicators HPC centers must disclose, and to improve
transparency in this process. Finally, from a management perspective,
service providers must balance performance with environmental con-
cerns, leading decision-making and investments towards sustainable
solutions within their data centers, adopting sustainable business mod-
els, and developing novel mechanisms to cooperate with HPC users and
electrical grid operators for further decarbonization.

This study was limited to the available information on state-of-the-
art supercomputers. However, this limitation should not affect the main
findings, as the study focuses only on perceiving the general trends in
the sector. Further research could include more quantitative analysis
to compare the top supercomputers currently operational, focusing
on their investments in sustainable solutions and their environmental
performance. Since the service providers do not disclose some perfor-
mance indicators, this type of analysis is limited. Moreover, future lines
of research could include analyzing if the climate change and, more
specifically, carbon emissions targets set for the ICT and data center
sector are aligned with the current efforts from HPC centers, and if
the identified strategies for decarbonization are enough to fulfill those
targets.
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