
Clouder: A Flexible Large Scale Decentralized
Object Store

Ricardo Manuel Pereira Vilaça

October 17, 2012

ii

Agradecimentos

Foi em 2007 que começou esta aventura. É incrı́vel como 5 anos passaram tão de-
pressa. Tudo isto foi possı́vel por duas razões. Primeiro, por estar a trabalhar numa
área entusiasmante e que me dá muito prazer trabalhar. Segundo, porque tive o apoio
pessoal e/ou cientifico de um conjunto de pessoas e instituições sem as quais não teria
sido possı́vel chegar a bom porto. Aproveito para expressar aqui os meus sinceros
agradecimentos aos que mais significativamente contribuı́ram para que esta aventura
fosse possı́vel.

Gostaria de começar por agradecer ao meu orientador Rui Oliveira. Antes de mais
por me desafiar a entrar nesta aventura e por ter excedido o papel de orientador cien-
tifico desta tese. Ao longo destes 5 anos foi um pilar e orientou-me pelo rumo certo
nos momentos mais difı́ceis. Para além disso, agradeço-lhe a oportunidade de alargar
a minha formação académica em atividades não diretamente relacionadas com a tese:
participação na elaboração de propostas de financiamento a projetos; revisão de artigos
cientı́ficos; apoio à lecionação de aulas de sistemas distribuı́dos; e a co-orientação de
alunos. Muito obrigado pela sua dedicação.

Ao longo deste tempo que passei no Grupo de Sistemas Distribuı́dos (GSD) passei
por grandes experiências profissionais e pessoais. Isto deve-se ao excelente ambi-
ente do GSD, proporcionado pelas pessoas que o compõe. Antes de mais gostaria de
agradecer a todos os atuais e antigos colegas de gabinete: Alfrânio Correia, Ana Nunes,
Bruno Costa, Filipe Campos, Francisco Cruz, Francisco Maia, Luı́s Ferreira, Luı́s
Soares, João Paulo, José Marques, Miguel Borges, Miguel Matos, Nelson Gonçalves,
Nuno Carvalho, Nuno Castro, Nuno Lopes, Paulo Jesus, Pedro Gomes e Ricardo
Gonçalves. Depois, a todos os professores do grupo e em particular, gostaria de
agradecer ao professor José Orlando pela total disponibilidade sempre que recorri à
sua ajuda.

O trabalho torna-se mais agradável quando os nossos colegas são também nossos

iii

iv

amigos. Assim sendo gostaria de agradecer a todos os membros dos ”Os Sem Estatuto
(OSE)” por todos os momentos de convı́vio. Para além dos colegas de gabinete, que
também são elementos dos OSE, gostaria de agradecer à Alexandra Silva, ao Daniel
Machado, ao Jácome Cunha, ao João Fernandes, ao Paulo Silva, e ao Tiago Alves.

Gostaria de agradecer também aos meus amigos fora do ambiente de trabalho pela
sua presença nos grandes momentos da minha vida e pelo seu apoio incondicional.
Gostaria de agradecer particularmente aos amigos da LESI, a todos os membros da
famı́lia Garrafónica e a todos os membros da minha CVX. Obrigado a todos por faz-
erem parte da minha vida.

De forma muito especial gostaria de agradecer o apoio da minha famı́lia, os meus
pais, José e Cândida, a minha irmã Leninha e o meu irmão Miguel. Os meus pais
sacrificaram-se para que eu e os meus irmãos pudéssemos estudar. Não há palavras
que descrevam a gratidão que eu sinto por tudo o que fizeram por mim. Sem eles
nunca teria chegado aqui.

Finalmente, porque a vida é muito mais do que trabalho e tive a feliz oportunidade
de durante este tempo para além do doutoramento ter vivido outro grande evento na
minha vida, o meu casamento. À Ana por estar sempre ao meu lado e por me motivar
nos momentos mais difı́ceis. Sem a sua energia e apoio incondicional esta tese não
teria sido possı́vel. Obrigado por tudo. AMO-TI pala sempre.

Algumas instituições apoiaram o trabalho apresentado nesta tese. A Fundação para
a Ciência e Tecnologia (FCT) apoiou este trabalho através de uma bolsa de doutora-
mento (SFRH/BD/38529/2007) durante 4 anos. O Departamento de Informática e
o HasLab providenciaram-me condições para o meu doutoramento. A HP Research
atribuiu-me uma bolsa para participar na conferência SOSP 2011. Parte deste tra-
balho foi financiado por fundos FEDER através do Programa Operacional Fatores de
Competitividade – COMPETE e por Fundos Nacionais através da FCT – Fundação
para a Ciência e a Tecnologia no âmbito do projeto Stratus/FCOMP-01-0124-FEDER-
015020 e pelo European Union Seventh Framework Programme (FP7) através da bolsa
número 257993 do projeto CumuloNimbo.

Braga, Julho de 2012
Ricardo Vilaça

Clouder: A Flexible Large Scale
Decentralized Object Store

Large scale data stores have been initially introduced to support a few concrete ex-
treme scale applications, such as social networks. Their scalability and availability
requirements often sacrifice richer data and processing models, and even elementary
data consistency. In strong contrast with traditional relational databases (RDBMS),
large scale data stores present very simple data models and APIs, lacking most of the
established relational data management operations, and presenting relaxed consistency
guarantees, providing eventual consistency.

Nowadays, with a number of available and mature alternatives, there is an increas-
ing willingness to use them in a wider and more diverse spectrum of applications by
skewing the current trade-off toward the needs of common business users, and easing
the migration from current RDBMS. This is particularly so when used in the context
of a Cloud solution, such as in a Platform as a Service (PaaS).

This thesis aims at reducing the gap between traditional RDBMS and large scale
data stores by seeking mechanisms to provide additional consistency guarantees, and
higher-level data processing primitives in large scale data stores. The devised mech-
anisms should not hinder the scalability and dependability of large scale data stores.
Regarding higher-level data processing primitives, this thesis explores two comple-
mentary approaches: extending data stores with additional operations such as general
multi-item operations; and coupling data stores with other existing processing facilities
without hindering scalability.

We address these challenges with a new architecture for large scale data stores,
efficient multi-item access for large scale data stores, and SQL processing on large
scale data stores. The novel architecture allows one to find the right trade-offs among
flexible usage, efficiency, and fault tolerance. To efficiently support multi-item access,

v

vi

we extend first generation large scale data store’s data models with tags, and a multi-
tuple data placement strategy, allowing to efficiently store and retrieve large sets of
related data at once. For efficient SQL support on scalable data stores, we devised
design modifications to existing relational SQL query engines, allowing them to be
distributed.

We demonstrate our approaches with running prototypes and extensive experimen-
tal evaluation using proper workloads.

Clouder: Armazenamento e
processamento de dados de forma
flexı́vel e descentralizada

Os sistemas de armazenamento de dados de grande escala foram inicialmente desen-
volvidos para suportar um leque restrito de aplicações de extrema escala, como as redes
sociais. Os requisitos de escalabilidade e elevada disponibilidade levaram a sacrificar
modelos de dados e processamento enriquecidos e até a coerência dos dados. Em
oposição aos tradicionais sistemas relacionais de gestão de bases de dados (SRGBD),
os sistemas de armazenamento de dados de grande escala apresentam modelos de da-
dos e APIs muito simples. Em particular, evidencia-se a ausência de muitas operações
de gestão de dados relacionais existentes e o relaxamento das garantias de coerência,
fornecendo coerência futura.

Atualmente, com o número de alternativas disponı́veis e maduras, existe o cres-
cente interesse em usá-los num maior e diverso leque de aplicações, orientando o atual
compromisso para as necessidades dos tı́picos clientes empresariais e facilitando a
migração a partir das atuais SRGBD. Isto é particularmente importante no contexto de
soluções cloud como plataformas como um serviço (PaaS).

Esta tese tem como objetivo reduzir a diferença entre os tradicionais SRGBDs e os
sistemas de armazenamento de dados de grande escala, procurando mecanismos que
providenciem garantias de coerência mais fortes e primitivas com maior capacidade de
processamento. Os mecanismos desenvolvidos não devem comprometer a escalabili-
dade e fiabilidade dos sistemas de armazenamento de dados de grande escala. No que
diz respeito às primitivas com maior capacidade de processamento, esta tese explora
duas abordagens complementares: a extensão de sistemas de armazenamento de dados
de grande escala com operações genéricas de multi-objeto e a junção dos sistemas de

vii

viii

armazenamento de dados de grande escala com mecanismos existentes de processa-
mento e interrogação de dados, sem colocar em causa a escalabilidade dos mesmos.

Para isso apresentámos uma nova arquitetura para os sistemas de armazenamento
de dados de grande escala, acesso eficiente a múltiplos objetos, e processamento de
SQL sobre sistemas de armazenamento de dados de grande escala. A nova arquite-
tura permite encontrar os compromissos adequados entre flexibilidade, eficiência e
tolerância a faltas. De forma a suportar eficientemente o acesso a múltiplos objetos
estendemos o modelo de dados de sistemas de armazenamento de dados de grande es-
cala da primeira geração com palavras-chave e definimos uma estratégia de colocação
de dados para múltiplos objetos, que permite eficientemente armazenar e obter grandes
quantidades de dados de uma só vez. Para o suporte eficiente de SQL sobre sistemas
de armazenamento de dados de grande escala, analisámos a arquitetura dos motores de
interrogação de SRGBDs e fizemos alterações que permitem que sejam distribuı́dos.

As abordagens propostas são demonstradas através de protótipos e uma avaliação
experimental exaustiva recorrendo a cargas adequadas baseadas em aplicações reais.

Contents

1 Introduction 1

1.1 Problem statement and objectives . 4

1.2 Contributions . 4

1.3 Results . 5

1.4 Dissertation outline . 5

2 Related work 9

2.1 Distributed Hash Tables (DHT) . 9

2.1.1 Chord . 12

2.1.2 Tapestry . 13

2.1.3 Pastry . 14

2.1.4 One-hop lookup DHTs . 15

2.1.5 Discussion . 16

2.2 Data placement in DHTs . 17

2.2.1 Single node placement . 18

2.2.2 Replica’s placement . 21

2.3 Large scale data stores . 24

2.3.1 Data models and Application Programming Interfaces (API) . 25

2.3.2 Architecture . 28

2.3.3 Discussion . 31

2.4 Query processing . 35

2.4.1 Rich processing in large scale data stores 37

2.4.2 Discussion . 39

2.5 Summary . 40

ix

x Contents

3 DataDroplets 41
3.1 Clouder . 41

3.1.1 Assumptions . 42

3.1.2 Architecture . 43

3.1.3 Epidemic-based persistent-state layer 45

3.2 DataDroplets . 48

3.2.1 Data model . 49

3.2.2 Application Programming Interface (API) 50

3.2.3 Request handling . 51

3.2.4 Overlay management . 53

3.2.5 Bootstrapping . 54

3.2.6 Fault tolerance . 55

3.2.7 Data placement . 60

3.2.8 Replica placement strategy 63

3.3 Prototype . 64

3.3.1 SimpleOneHop . 65

3.3.2 DataDroplets . 66

3.4 Evaluation . 72

3.4.1 Test workloads . 73

3.4.2 Experimental setting . 77

3.4.3 Results . 79

3.4.4 Summary of results . 85

3.5 Discussion . 85

4 SQL on large scale data stores 87
4.1 Assumptions . 88

4.2 Challenges . 88

4.2.1 Scalable query processing 89

4.2.2 Data model mismatch . 90

4.2.3 Performance . 91

4.3 Architecture . 91

4.4 Prototype . 95

4.4.1 HBase overview . 95

4.4.2 Derby overview . 96

4.4.3 CumuloNimbo’s architecture 96

Contents xi

4.4.4 Prototype architecture . 99
4.4.5 Relational-tuple store mapping 100
4.4.6 Optimizing data transfer . 101
4.4.7 Scan costs . 102
4.4.8 Support for multiple architectures 103

4.5 Evaluation . 105
4.5.1 Test workloads . 105
4.5.2 HBase . 105
4.5.3 HBase transaction manager 109
4.5.4 Summary of results . 112

4.6 Discussion . 112

5 Conclusions 113
5.1 Future work . 114

Bibliography 117

xii Contents

List of Figures

1.1 CAP . 3

2.1 Consistent hashing with three nodes N1, N2 and N3 and five keys
A,B,C,D and E . 11

2.2 Tapestry routing example with hexadecimal bits of length five 13
2.3 OneHop membership notifications 16
2.4 Replica placement strategies . 22
2.5 Dynamo’s API . 26
2.6 PNUTS’s API . 27
2.7 Bigtable’s API . 28
2.8 Cassandra’s API . 28
2.9 Large scale data store architectures 30
2.10 Query engine architecture. 36

3.1 Clouder architecture . 45
3.2 DataDroplets’ API . 50
3.3 Request handling . 52
3.4 Membership service’s API . 55
3.5 Membership notification events . 56
3.6 Replication . 56
3.7 Multi-item query . 58
3.8 Data transfer example . 59
3.9 Tagged placement strategy . 62
3.10 Class diagram for single node data placement strategies 67
3.11 Class diagram for replica placement strategies 68
3.12 Class diagram for data store classes 69
3.13 DataDroplets’ messages . 71

xiii

xiv List of Figures

3.14 System’s response time . 80
3.15 System’s response time with a hundred simulated nodes 82
3.16 Additional evaluation results . 83
3.17 Replica placement results . 84

4.1 Large scale data stores architecture. 92
4.2 Data management architectures. 93
4.3 Scalable PaaS Architecture . 97
4.4 Architecture prototype . 99
4.5 Data model mapping . 101
4.6 Multi-architecture interface . 103
4.7 TPC-C single machine results . 107
4.8 TPC-C scaling out results . 108
4.9 Machine scaling results . 111

List of Tables

2.1 Comparison of data stores . 32

3.1 Probability of Operations . 77

4.1 Overhead results (ms) . 107

xv

xvi List of Tables

Chapter 1

Introduction

Massive-scale distributed computing is a challenge at our doorstep. Digital data stor-
age has reached unprecedented levels with the ever increasing demand of individuals
and organizations for information in electronic formats, ranging from the disposal of
traditional media storage media of music, photos and movies to the rise of massive
applications. Such large volumes of data tend to disallow their centralized storage and
processing, making extensive and flexible data partitioning unavoidable. Particularly,
Web-scale applications manage large amounts of data that are generated continuously
and systems processing such data run under rigid time constraints.

Relational Database Management Systems (RDBMS) have been the key technol-
ogy for the management of structured data. RDBMS offer developers both a rich
processing interface, Structured Query Language (SQL), and a transactional model
that helps developers to ensure data consistency. SQL is the standard language for
accessing and manipulating databases. Most database applications and tools that have
been developed over the years are coupled to SQL. Transactions in RDBMS have the
well-known ACID properties: atomicity, consistency, isolation and durability. ACID
properties guarantee that the integrity and consistency of the data is maintained, de-
spite concurrent accesses and faults (Garcia-Molina et al. 2008).

However, traditional relational database management systems are based on highly
centralized, rigid architectures that fail to cope with the increasing demand for scalabil-
ity and dependability, or are not cost-effective. High performance RDBMS invariably
rely on mainframe architectures or clustering based on a centralized shared storage in-
frastructure. Although easy to setup and deploy, these often require large investments
upfront and present severe scalability limitations.

1

2 1 Introduction

This was the breeding ground for a new generation of elastic data management so-
lutions that can scale not only in the sheer volume of data which can be held, but also in
how required resources can be provisioned dynamically and incrementally (DeCandia
et al. 2007; Cooper et al. 2008; Chang et al. 2006; Lakshman and Malik 2010). Fur-
thermore, the underlying business model supporting these efforts requires the ability to
simultaneously serve and adapt to multiple tenants with diverse performance and de-
pendability requirements, which add to the complexity of the whole system. These first
generation large scale data stores were built by major Internet players, such as Google,
Amazon, Microsoft, Facebook and Yahoo, by embracing the Cloud computing model.

After these solutions of major companies several community or commercial im-
plementations of large scale data stores emerged. They are a subset of the so called
NoSQL databases1: Cassandra2, HBase3, Oracle NoSQL Database4, MongoDB5, CouchDB6,
RavenDB7, Riak8, among others.

NoSQL databases may be categorized according to the way they store the data
and fall under categories, such as key-value stores, column stores, document store
databases, and graph databases. Key-value stores are the most common and allow the
application to store its data in a schema-less way, only defining a key per item.

In strong contrast with traditional relational databases, large scale data stores present
very simple data models and APIs, lacking most of the established relational data man-
agement operations, and presenting relaxed consistency guarantees, providing eventual
consistency (Vogels 2009). The reduced flexibility compared to traditional RDBMS is
compensated by significant gains in scalability to hundreds of nodes, and performance
for certain data models. However, most of the times this implies to think a priori about
data access patterns, and having queries defined upfront.

Large scale data stores are often highly optimized to retrieve and append opera-
tions, and often offer little functionality beyond single item. All large scale data stores
have simple data models with no rigid schema. They offer custom and simple key-
value interfaces that allow applications to insert, query, and remove individual items

1http://nosql-database.org
2http://cassandra.apache.org
3http://hadoop.apache.org
4http://www.oracle.com/technetwork/database/nosqldb/overview/

index.html
5http://www.mongodb.org
6http://couchdb.apache.org
7https://github.com/ravendb/ravendb
8http://wiki.basho.com

http://nosql-database.org
http://cassandra.apache.org
http://hadoop.apache.org
http://www.oracle.com/technetwork/database/nosqldb/overview/index.html
http://www.oracle.com/technetwork/database/nosqldb/overview/index.html
http://www.mongodb.org
http://couchdb.apache.org
https://github.com/ravendb/ravendb
http://wiki.basho.com

3

Availability

Consistency

Network
partition
tolerance

Scalability

(a) RDBMS

Availability

Consistency

Network
partition
tolerance

Scalability

(b) Large Scale Data Stores

Availability

Consistency

Network
partition
tolerance

Scalability

(c) Clouder

Figure 1.1: CAP

or at most range queries based on the primary key of the item. Indeed, besides basic
store, retrieve and scan primitives, current systems lack any filtering or processing ca-
pabilities. This is unfortunate as all of the most useful data management operations,
such as filtering, joining, grouping, ordering and counting, are done outside the sys-
tem. These systems require more general and complex multi-item queries to be done
asynchronously and outside the system, using some implementation of the the Map
Reduce (Dean and Ghemawat 2008) programming model: Yahoo’s PigLatin (Olston
et al. 2008), Google’s Sawzall (Pike et al. 2005), Microsoft’s LINQ (Meijer 2011).

Regarding consistency guarantees, large scale data stores rely on well-known dis-
tributed systems techniques to be elastic and highly available. The CAP theorem (Brewer
2000) states that in a distributed system it is impossible to simultaneously provide:
network partition tolerance, strong consistency and high availability. While traditional
RDBMS focus on availability and consistency, Figure 1.1(a), most large scale data
stores focus on applications that have minor consistency requirements, Figure 1.1(b).
They replace the traditional transactional serializability (Bernstein et al. 1987) or lin-
earizability (Herlihy and Wing 1990) strict criteria by eventual consistency.

New generation large scale data stores are in strong contrast with traditional rela-
tional databases and are in disjoint design spaces. Large scale stores forfeit complex
relational and processing facilities, and most strikingly, transactional guarantees com-
mon in traditional RDBMS. By doing so, they focus on a specific narrow trade-off
among consistency, availability, performance, scale, and migration cost that tightly
conforms with their very large motivating application scenarios. They focus on ap-
plications that have minor consistency requirements and can favor availability with an
increasing complexity at the application logic.

However, in most enterprises where there isn’t a large in-house research develop-

4 1 Introduction

ment team for application customization and maintenance, it is hard to add this com-
plex layer to the application. As a result, it is hard to provide a smooth migration path
for existing applications based on relational databases, and using a SQL-based inter-
face, even when using modern Web-based multi-tier architectures. This is a hurdle to
the adoption of Cloud computing by a wider potential market; thus, a limitation to the
long term profitability of businesses model.

1.1 Problem statement and objectives

New generation large scale data stores and traditional RDBMS are in disjoint design
spaces, and there is a huge gap between them. This thesis aims at reducing this gap
by seeking mechanisms to provide additional consistency guarantees, and higher-level
data processing primitives in large scale data stores, Figure 1.1(c). Regarding higher-
level data processing primitives, this thesis explores two complementary approaches:
extending data stores with additional operations, such as general multi-item operations;
and coupling data stores with other existing processing facilities.

This approximation between large scale data stores provides the current trade-off to
lead toward the needs of common business users, and eases the migration from current
RDBMS. The devised mechanisms should not hinder the scalability and dependability
of large scale data stores.

1.2 Contributions

The main contributions of this thesis are:

• A new architecture for large scale data stores - allowing to find the right trade-
offs among flexible usage, efficiency, and fault tolerance by a clear separation
of concerns between different functional aspects of the system, which should be
addressed at different abstractions levels with different goals and assumptions.

• Efficient multi-item access for large scale data stores extending first generation
large scale data store’s data models with tags, and a multi-tuple data placement
strategy that allows to efficiently store and retrieve large sets of related data at
once. Multi-tuple operations leverage disclosed data relations to manipulate sets
of comparable or arbitrarily related elements.

1.3 Results 5

• Design modifications to existing relational SQL query engines allowing them to
be distributed, and efficiently run SQL on a scalable data store while being able
to scale with the data store.

1.3 Results

The thesis presents the following results:

• A prototype of a new large scale data store, following the proposed architecture
and implementing the novel data placement strategy presented in this disserta-
tion, is presented and evaluated.

• Extensive simulation and real results, under a workload representative of appli-
cations currently exploiting the scalability of emerging key-value stores, confirm
the properties claimed both by the new large scale data store and by the data
placement strategy.

• A prototype of a distributed SQL query engine running on a large scale data
store.

• Experimental results, using standard industrial database benchmarks, show that
the prototype is both scalable and efficient compared to a standalone version of
a SQL engine.

1.4 Dissertation outline

The chapters of this dissertation are organized as follows:

• Chapter 2 presents the relevant related work for this thesis. It starts by describ-
ing DHTs and its most popular implementations. After describing DHTs, exist-
ing data and replica placement strategies in DHTs are described and compared.
Then, a detailed comparison of existing large scale data stores regarding their
data model, API, and architecture is presented. Finally, recent work, aiming to
ease the transition path from relational databases to large scale data stores, is
described and compared. Each section is concluded with a comparison of the
solutions described, and an analysis focused on their limitations.

6 1 Introduction

• Chapter 3 presents the novel architecture for large scale data stores; details
the design of one of its components (DataDroplets) encompassing existing data
placement strategies, and a novel correlation-aware placement strategy for effi-
cient multi-items operations; a detailed description of DataDroplet’s prototype;
and the last section presents the extensive evaluation results.

• Chapter 4 starts by presenting the challenges for the efficient support of SQL
on a large scale data store, and then presents the fundamental design modifi-
cations needed to be done to an existing SQL query engine. The chapter also
includes the description of the current prototype developed in the context of the
CumuloNimbo FP7 project and its experimental evaluation.

• Chapter 5 provides a conclusion and points to future research directions for large
scale data stores with additional consistency and enriched APIs, and how to ease
the migration from current RDBMS.

Related publications This thesis integrates the work of my PhD research done from
2007 to 2012. During this period, I was involved in a National research project, Stratus
(PTDC/EIA-CCO/115570/2009), and two European research projects: CumuloNimbo
(FP7-257993) and GORDA (FP6-IST2-004758). Preliminary versions of portions of
this dissertation have been published as:

• Ricardo Vilaça, Francisco Cruz, José Pereira and Rui Oliveira, A Simple Ap-
proach for Executing SQL on a NoSQL Datastore (submitted), ACM Sympo-
sium on Cloud Computing, San Jose, CA, USA, October 14-17, 2012

This paper presents a simple approach for running SQL queries on a large scale
data store, while preserving the underlying flexible schema and transaction-less
semantics. The experimental results show it provides good performance and
scalability properties.

• Ricardo Vilaça, Rui Carlos Oliveira, and José Pereira. A correlation-aware data
placement strategy for key-value stores. In Proceedings of the 11th IFIP WG 6.1
international conference on Distributed Applications and Interoperable Systems,
DAIS’11, pages 214–227, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN
978-3-642-21386-1.

1.4 Dissertation outline 7

This paper presents a novel data placement strategy, supporting dynamic tags
based on multidimensional locality-preserving mappings. Its evaluation under a
realistic workload shows that the proposed strategy offers a major improvement
on the system’s overall response time and network requirements.

• Miguel Matos, Ricardo Vilaça, José Pereira, and Rui Oliveira. An epidemic
approach to dependable key-value substrates. In International Workshop on
Dependability of Clouds, Data Centers and Virtual Computing Environments
(DCDV 2011), June 2011

This position paper outlines the major ideas of a novel architecture designed to
handle today’s very large scale demand and its inherent dynamism.

• Ricardo Vilaça, Francisco Cruz, and Rui Oliveira. On the expressiveness and
trade-offs of large scale tuple stores. In Robert Meersman, Tharam Dillon, and
Pilar Herrero, editors, On the Move to Meaningful Internet Systems, OTM 2010,
volume 6427 of Lecture Notes in Computer Science, pages 727–744. Springer
Berlin / Heidelberg, 2010

This paper introduces DataDroplets, a novel data store that shifts the current
trade-off toward the needs of common business users, providing additional con-
sistency guarantees and higher-level data processing primitives. Preliminary re-
sults of the system’s performance under a realistic workload are also presented.

• Ricardo Vilaça and Rui Oliveira. Clouder: a flexible large scale decentralized
object store: architecture overview. In WDDDM ’09: Proceedings of the Third
Workshop on Dependable Distributed Data Management, pages 25–28, New
York, NY, USA, 2009. ACM

This position paper presents preliminary ideas for the architecture of a flexible,
efficient and dependable fully decentralized large scale data store able to manage
very large sets of variable size objects, and to coordinate in place processing.

8 1 Introduction

Chapter 2

Related work

The need for leveraging decentralized infrastructures to store and process large vol-
umes of data was explicitly acknowledged by the research in preceding years. A large
body of research has been recently dedicated to seek more flexible solutions based on
the foundation of highly decentralized peer-to-peer systems that, to some extent, is
feeding most of the ideas and proposals of large scale data stores.

This chapter is organized as follows. Section 2.1 starts by presenting Distributed
Hash Tables (DHTs), and then reviewing the most popular DHT implementations that
were the basis for the ones used in large scale data stores. Then, in Section 2.2 data
placement strategies used in DHTs are reviewed. It starts by describing the single
node strategies, and then the replicas placement when replication is used. Section 2.3
presents a detailed comparison of large scale data stores regarding: data model and
programming interface and architecture. Then, Section 2.4 describes how query pro-
cessing is done in traditional RDBMS, and presents some work aiming to ease the
transition path from relational databases to large scale data stores. Finally, the most
relevant conclusions to this thesis are summarized in Section 2.5.

2.1 Distributed Hash Tables (DHT)

Most distributed systems need data location and routing. Data location and routing
deal with the problem of efficiently route the request, a key representing some data, to
the closest node holding the information. Additionally, when a large number of nodes
exists it must be able to find data, despite the dynamics on the system’s membership
due to network and node’s failures.

9

10 2 Related work

Client-server based systems present limitations in an Internet scale distributed en-
vironment. In this type of systems, resources are concentrated on a small number
of nodes, and sophisticated techniques must be used to provide high availability and
dependability.

Peer-to-peer systems emerge as an alternative to traditional client-server systems.
In a peer-to-peer system, all nodes play symmetric roles acting as clients and servers si-
multaneously, and being responsible for part of the information available in the system.
Although circumventing many problems of traditional client-server systems, peer-to-
peer systems present more complex placement and search methods, node organization
and security issues.

Although initial peer-to-peer systems only provide file system-like capabilities, in
recent years they have been enriched with storage and processing capabilities over
structured data. Particularly, large scale data stores use peer-to-peer systems.

One of the major problems in peer-to-peer systems is to find nodes responsible to
answer a given query. Nodes are organized in overlay networks, and depending on
nodes maintaining or not a structure with specific topologies and properties to answer
queries, peer-to-peer systems can be classified as unstructured or structured. The for-
mer do not impose any structure on the overlay network. They build a random graph
with nodes, and use flooding or random walks on that graph to discover data stored
by overlay nodes. The latter use key-based routing schemes, and assign keys to data
items building a graph that maps each key to the node that stores the correspond-
ing data. The most common type of structured P2P network is the Distributed Hash
Table (DHT) (Lua et al. 2005). Similar to the functionality provided by hash tables
(which store keys to values maps), DHTs are distributed data structures that enable
peer-to-peer applications to efficiently store and retrieve data, although having higher
maintenance costs. As peer-to-peer systems are highly dynamic, they store the values
in several nodes to achieve availability.

Oppositely to traditional peer-to-peer systems, where nodes can leave and join the
system freely leading to transient failures, large scale data stores run on stable envi-
ronments. Additionally, large scale data stores run under rigid time constraints. For
this kind of environments, structured peer-to-peer systems based on DHTs are most
adequate (Castro et al. 2004). DHTs are a powerful abstraction for the design of new
applications and communication models, and allow to guarantee a correct routing an-
swer in a bounded number of hops in dynamic networks.

2.1 Distributed Hash Tables (DHT) 11

The first step to address the data location and routing problem in DHTs is to assign
objects to the available nodes. One of the most adopted techniques for this purpose is
consistent hashing (Karger et al. 1997). Each node has a Globally Unique IDentifier
(GUID), and data items also have unique identifiers. Moreover, a virtual domain is
defined by identifiers positioned in a virtual ring which are unique integers in the range
[0, 2m−1]. Then, both node and data identifiers are mapped into the ring virtual domain
(using some hash function), and a keyK is assigned to the node whose virtual identifier
is equal or greater than virtual identifier of item with keyK. Such node is known as the
successor(K). Figure 2.1 shows a ring with m = 3 (eight identifiers). The system has
three nodes N1, N2 and N3, and five data items with keys A,B,C,D and E. Keys
A,C and D are allocated to node N1; keys B and E are allocated to nodes N2 and
N3, respectively.

N1

N3

A

B

C

D

E

N2

1

2

3
4

5

6

7
0

Figure 2.1: Consistent hashing with three nodes N1, N2 and N3 and five keys
A,B,C,D and E

When a node fails its load is reallocated to adjacent nodes; when a node joins the
system it splits the load with an existing node. In the example above, if N2 fails, data
with key B will be reallocated to node N3. Since peer-to-peer systems are highly
dynamic, this behavior is crucial as the reconfiguration of the system should be as fast
as possible.

Subsequently, we present the most popular DHT implementations, which were the
basis for the ones used in large scale data stores (DeCandia et al. 2007; Chang et al.
2006; Cooper et al. 2008; Lakshman and Malik 2010).

12 2 Related work

2.1.1 Chord

Chord (Stoica et al. 2001) is a DHT implementation where node and data are both
mapped into a 160-bit identifier space. In Chord, a node in a network of size N only
maintains information about O(logN) nodes. The identifier space is the same used in
consistent hashing providing a ringlike geometry.

Implementing consistent hashing in a distributed environment only requires each
node to know its successor node in the ring. Thus, queries can be answered by passing
them around the ring following these successor pointers. As this information implies
inefficient routing, Chord maintains additional routing information.

Chord builds a routing table, known as the finger table, having at most m (number
of bits in the key/node identifiers) entries. The ith entry in the table, at node N , is the
node S = successor(N + 2i−1). This means that S is the first node succeeding N
by at least 2i−1 positions in the ring. Each entry in the finger table contains the Chord
identifier and the IP address of the node. The first entry in the finger table of node N
is its immediate successor in the ring, and is further referred as successor. With this
scheme, each node stores information about a small number of nodes and have more
information about nearby nodes in the ring than nodes farther away.

As the generated finger table does not have enough information to directly route
any arbitrary key K, Chord defines how the routing is done in such case. A node N ,
which has no knowledge of the successor of a key K, successor(K), searches in its
finger table for the node that immediately precedes K in the ring, and asks that node
whose identifier is closest to K. The repetition of this process allows N to learn nodes
closer to K.

Chord must be able to locate every key in the network, despite failures. As such,
the successor of each node must be maintained, and for every keyK the successor(K)

is responsible for K. Thus, it is able to maintain integrity of the ring despite failures of
nodes. In order to simplify the joining and leaving of nodes, Chord also maintains in
each node a predecessor pointer of the immediate predecessor of that node in the ring.

A new node N joining the system learns the identity of an existing node M by
an external mechanism; then uses M to initialize its state and join the existing Chord
network. Additionally, Chord needs to update the fingers of existing nodes and move
the keys to which node N is the new successor.

2.1 Distributed Hash Tables (DHT) 13

2.1.2 Tapestry

Tapestry (Zhao et al. 2001) is a DHT implementation that uses the routing mechanisms
introduced by Plaxton et al. (Plaxton et al. 1997). They propose a meshlike structure of
neighboring maps that can be viewed as a large set of embedded trees in the network.

Those neighboring maps are used to incrementally route messages to the destina-
tion digit by digit. 1 A node N has a neighboring map with multiple levels where each
level contains an entry per base of the identifier. The ith entry in the jth level (Lj) is
the identifier and location of the closest node ending with ”i”+suffix(N, j-1).

Figure 2.2 shows an example of Tapestry routing from node 12345 to node 123AE
with five hops. Briefly, the routing is done as follows: it starts at node 12345 at level
L1 being forward to node 6893E with routing at level L2, second hop. Finally, at level
L5 node F23AE forwards to destination node 123AE .

325AEDA5AE 12345

A45AE163AE

F23AE

6893E

123AE

L2

L4

L4

L3

L3

L4 L1

L4

L5

Figure 2.2: Tapestry routing example with hexadecimal bits of length five

This mesh can be used to store structured objects by generating identifiers to ob-
jects similar to the ones used by nodes. Thus, each object is mapped to the node
having most common bits. Tapestry has been used in OceanStore (Rhea et al. 2003), a
distributed storage application.

1In further examples, bits are processed from right to left.

14 2 Related work

2.1.3 Pastry

Pastry (Rowstron and Druschel 2001) is another DHT implementation combining tech-
niques from Chord and Tapestry.

Each node in Pastry maintains three data structures: a routing table, a neighborhood
set and a leaf set. The size of those data structures is configured using the following
parameters: b, |M |, and |L|. The value of b involves a trade-off between the size of the
routing table and the number of hops between any pair of nodes. Typical values for b,
|M |, and |L| are 4, 2b, and 2b, respectively. They may be configured depending on the
target environment and desired behavior.

For routing purposes, Pastry node identifiers are handled as sequences of digits in
base 2b. The routing table has dlog2bNe rows with 2b−1 entries in each row, in order to
route messages with a maximum of dlog2bNe steps. The th row contains the identifiers
and IP addresses of the closest 2b− 1 nodes that share with the current node the first n
digits, but differ in the n+1 digit. The distance is measured using a proximity metric.
This proximity metric is given by the application and can be any scalar metric, such as
IP routing hops or geographic distance.

The neighborhood set, M, contains the |M | closest nodes, according to the prox-
imity metric. It is used for maintaining locality properties. The leaf set, L, contains the
|L| numerically closest nodes: the first half are the numerically smaller nodes, and the
other half the numerically larger nodes, all relative to the present node. Additionally to
the routing table, the leaf set is used during message routing for optimization purposes.

When a node receives a message, it first checks if the key falls into the range of
node’s identifier covered by its leaf set. If so, the message is forwarded directly to the
node in the leaf set, which is closest to the key. Otherwise, the routing table is used
and the message is forwarded to the node whose identifier shares with the key a prefix,
which is at least one digit longer than the prefix that the key shares with the current
node’s identifier.

It is possible that the appropriate entry in the routing table is empty or the asso-
ciated node is not reachable, in which case the message is forwarded to a node that
shares a prefix with the key at least as long as the present node’s identifier.

Routing in Pastry can be random, meaning that the choice among multiple nodes
can be made randomly. Thus, in the event of a malicious or failed node along the path,
one can avoid the bad node by repeating the query several times.

2.1 Distributed Hash Tables (DHT) 15

2.1.4 One-hop lookup DHTs

Typical DHT implementations present a high lookup cost not appropriate for peer-to-
peer applications in which the routing overlay is used to find the nodes responsible for
a particular data item, and are then contacted directly as in data stores. Beehive (Rama-
subramanian and Sirer 2004) and OneHop (Gupta et al. 2004) appeared as alternatives
offering one hop lookup.

Beehive is a general replication framework operating on any ring-based DHT that
uses prefix routing: Chord, Pastry, or Tapestry. The key idea behind Beehive is: if the
object is replicated at all nodes preceding the node on all query paths, the predeces-

sor and the successor of the node, on average the number of hops in lookup will be
reduced to one. Therefore, Beehive controls the replication in the system by defining
a replication level to each object. The replication level may vary from 0 to logmN , 2m

being the ring size. The lookup for an object with replication level logmN costs one
hop.

OneHop is a peer-to-peer routing algorithm where every node maintains a full rout-
ing table. The routing table has information about all nodes in the overlay, and the
query success rate depends on the accuracy of the routing table. This is determined by
the amount of time needed to notify membership changes in the network. Thus, the au-
thors define a hierarchy forming dissemination trees to lower notification delays. The
128-bit circular identifier space, similar to the one used in Chord, is divided in k equal
partitions called slices. The ith slice contains the nodes whose identifiers are contained
in interval [i.2

128

k
, (i+1).2128

k
]. Each slice has a slice leader, which is dynamically chosen

as the successor of key (i+1/2).2128

k
. In the same way, each slice is divided into units;

each unit has also a unit leader determined in the same way as the slice leader.

In order to maintain the routing table, each node maintains local information and
notifies changes to all nodes. The former is needed so each node knows the interval in
the circular space it is responsible for, and the latter is needed to route requests in just
one hop.

Local information is maintained by a stabilization process in which nodes send
keep-alive messages to its successor and predecessor.

The notification of other nodes about membership changes is done by means of the
dissemination tree, Figure 2.3, by the following process:

1. First the node sends a message to its slice leader.

16 2 Related work

slice leader

unit leader

regular node

2

2

1

2

3
3

4 4 4 4

Figure 2.3: OneHop membership notifications

2. The slice leader aggregates all messages from its slice received in interval tbig,
and then sends them to other slice leaders.

3. The slice leaders aggregate all messages received in interval twait, and then send
them to unit leaders.

4. Unit leaders send this information to their successors and predecessors in the
stabilization process.

5. Other nodes propagate information in the same direction they receive.

2.1.5 Discussion

Chord, Pastry and Tapestry have the same approach for routing, exploring the work
by Plaxton et al. (Plaxton et al. 1997). They differ in the approach used to achieve
network locality and in replication support.

In Chord, there is no natural correlation between the overlay namespace distance
and network distance. On the contrary, Tapestry and Pastry have natural correlation
between the overlay topology and the network distance. Furthermore, Chord makes
no explicit effort to achieve good network locality.

2.2 Data placement in DHTs 17

A large scale data store is a direct contact application in which the routing overlay is
used to find the nodes responsible for a particular data item. This type of applications
need to maintain information about all nodes to reduce the lookup latency (Cruces
et al. 2008). Moreover, the membership is more stable than in traditional peer-to-peer
systems, where nodes can leave and join the system arbitrarily.

Typical implementations of DHTs favor a small memory and network overhead
over lookup latency; thus, providing a higher cost in routing and searching of data.
One-hop protocols presented in Section 2.1.4 question this trade-off and allow a lookup
using only one hop. However, they must store the routing information for all nodes on
each node, and this requires higher background traffic and appropriate mechanisms to
maintain the routing tables up-to-date.

Large scale data stores, such as Dynamo (DeCandia et al. 2007) and Cassan-
dra (Lakshman and Malik 2010), use a one hop DHT for data location and routing
in order to avoid multi-hops for data lookup as it would increase variability in re-
sponse times. While the average latency could not suffer much from these variations,
the latency at higher percentiles (needed to satisfy some SLAs) would increase. Each
node maintains enough local routing information to route a request to the appropriate
node directly.

2.2 Data placement in DHTs

One of the major problems in distributed processing over massive-scale storage is the
data placement problem.

The distributed placement of data is a well-known problem in distributed data man-
agement (Özsu and Valduriez 1999). It can be defined as a mapping from N items (all
current items in the system) to the S available nodes. In an infrastructure with the di-
mension of a large scale data store (hundreds of nodes), hardware and software failures
are common; therefore, nodes may fail or rejoin the system frequently (Schroeder and
Gibson 2007). Furthermore, in order to achieve the desired elasticity of cloud comput-
ing, the system must be capable of easily add or remove nodes (scale in or out) in a
quick and transparent way. This poses new challenges to the data placement problem.
Over this environment, the placement must be dynamic to adapt to joining or leaving
nodes, while having a minor impact on the system’s performance, by minimizing the
cost of the data transfer and rebalancing processes as the system scales in and out.

18 2 Related work

The optimal distribution of items should consider both the cost of the data distribu-
tion itself (of storing and moving the data to different nodes), and the performance of
future operations that query the stored data. While for operations that add new data to
the system, its performance depends directly on the data placement strategy; for future
queries it is not clear the cost of the used data placement strategy. The solution to
the placement problem is dependent on the applications running in the system and on
their workloads. Moreover, in a multi-tenant environment, workloads with different
requirements may coexist.

Particularly, by mapping keys to values in a distributed manner, DHTs also need
a distributed data placement strategy to assign items to nodes. In ring-based DHTs,
the data placement strategy can be decomposed in two components: the single node
placement strategy, presented in section 2.2.1, and the replicas placement strategy,
presented in section 2.2.2. The former is used to define the partition of data items
across the ring, which nodes are responsible for each data item; the latter is used to
define which nodes will have the additional replicas needed to achieve resilience.

2.2.1 Single node placement

This section presents and compares the strategies used by DHTs to partition data across
all available nodes. For a given data item, the strategy must define which node is
responsible for it, allowing every other node to discover the node responsible for that
data item.

Random

One of the most used data placement strategies is the random strategy. In the random
strategy, the data items’ keys are, similar to node identifiers, pseudo-randomly hashed
in the domain [0, 2m − 1].

The major advantage of this strategy lies in uniformly mapping data’s identifiers to
the identifier space, providing automatic load balancing. However, the hashing does
not contemplate data locality, and can make range queries very expensive by retrieving
continuous data items from many different nodes, and later sorting them in the proper
order.

2.2 Data placement in DHTs 19

Ordered

The ordered strategy tries to improve range queries, it requires that items’ keys define
some partially ordered set, placing items according to this order. In this strategy, an
order-preserving hash function (Garg and Gotlieb 1986) is used to generate the iden-
tifiers. Compared to a standard hash function, for a given ordering relation among the
items, <, and items I1 and I2, an order-preserving hash function hashorder() has the
extra guarantee that if I1 < I2, then hashorder(I1) < hashorder(I2). This strategy
preserves data locality, because the hash function preserves the partial order defined
over the items.

However, it is useful to have some knowledge on the distribution of the items’
keys (Garg and Gotlieb 1986) to make the order-preserving hash function uniform as
well. There are many order-preserving hash functions that can be used, however, it
is quite improbable that they also provide randomness and uniformity. The straight-
forward approach to the implementation of an ordered placement is to use the exact
relative values of the items’ keys, according to the maximum and minimum value of the
expected item’s key domain. This requires a priori knowledge of the expected domain
for items’ keys. Clearly, this estimate of the domain must be carefully done. While an
optimistic estimate of the domain prevents from future reorganization of items, it may
lead to a non-uniform distribution of data across nodes. On the contrary, a pessimist
estimate of the domain leads to a more uniform distribution of data across nodes, but
may trigger a costly reorganization of items.

The ordered strategy limits the optimization to queries with single attribute ranges
or imposes a more complex overlay network, such as Mercury (Bharambe et al. 2004)
or Chord# (Schutt et al. 2006), where multiple simple overlays, one for each attribute,
are mapped onto the same set of nodes.

Space Filling Curves (SFCs)

One approach to avoid the restriction to single attribute queries is to preserve data
locality, using locality preserving space filling curves (Sagan 1994). SFCs map multi-
dimensional data to one-dimensional keys. While the ordered strategy takes into ac-
count a single attribute, data items’ keys, this technique can consider multiple items’
attributes.

Systems using this type of strategy (Schmidt and Parashar 2003; Ganesan et al.
2004; Chawathe et al. 2005) guarantee that a query is answered with bounded costs in

20 2 Related work

terms of the number of messages and number of nodes involved. They support queries
with partial keywords, wildcards and range queries.

These systems use an analogous approach to index data and distribute the index
to nodes. However, the query engine is different. Place Lab (Chawathe et al. 2005)
performs a lookup for each value in the specified range, which makes its performance
suboptimal. The approach used by Ganesan et al. (Ganesan et al. 2004) increases
false-positives (for example, non-relevant nodes may receive the query) to reduce the
number of sub-queries. Squid (Schmidt and Parashar 2003) decentralizes and dis-
tributes the query processing across multiple nodes in the system. Recursive query
processing can be viewed as constructing a tree. At each level of the tree the query is
restricted to a set of nodes, which are refined at the next level. The tree is embedded
into the overlay network: the first node performs the first refinement of the query, and
each subsequent node further refines the query and forwards the resulting sub-queries
down the tree to proper nodes in the system.

In SFCs, if the query contains partial keywords, wildcards or is a range query,
the query identifies a set of points (data items) in the multi-dimensional space that
corresponds to a set of points in the one dimensional identifier space.

Discussion

Each presented strategy has its trade-offs. While random strategy provides automatic
load-balancing and behaves well for single item lookup queries, they don’t preserve
data locality; therefore, they have to forward multi item queries to all nodes.

Furthermore, all strategies described above, except for range queries, do not con-
sider general multi-item operations, which are common over data-intensive workloads.
A multi-item operation requests database operations (reads and/or writes) to a specific
subset of items to accomplish a certain task. As shown by Gibbons et al. (Yu et al.
2006), the availability and performance of multi-item operations is highly affected by
the data placement and partition strategies.

The probability for a pair of items to be requested together in a query (known as
correlation) is not uniform, but it is often highly biased (Zhong et al. 2008). Addition-
ally, correlation is mostly stable over time for most real applications. Therefore, if the
data placement strategy places correlated items on the same node, then the communi-
cation overhead for multi-item operations tends to reduce.

To our knowledge, existing DHTs (Stoica et al. 2001; Ratnasamy et al. 2001; Row-

2.2 Data placement in DHTs 21

stron and Druschel 2001; Zhao et al. 2001; Bharambe et al. 2004; Schutt et al. 2006)
use a single strategy for data placement. However, the best strategy is dependent on
the applications and their workloads. While some placement strategies can be optimal
for some queries, it may have a huge cost for other types of queries. Therefore, each
data placement strategy yields different trade-offs.

The use of a single strategy for data placement prevents the data placement to
adapt and to be optimized to the clients’ workloads, and, in the specific context of
cloud computing, to suit the multi-tenant architecture.

2.2.2 Replica’s placement

Data must be replicated to achieve data resilience or for performance reasons, such as
load balancing of read-only operations. In a replicated environment, for a replication
degree of R there are R replicas per item. One of the nodes is chosen using the single
node placement strategy, and the others R − 1 replicas are chosen using the replica
placement strategy. Multiple replica placement schemes can be defined, and they could
have a high impact in the availability and performance of the system (Yu et al. 2006;
Ktari et al. 2007; Leslie et al. 2006).

All replica placement strategies presented bellow can be applied to all DHT im-
plementations presented above. However, some strategies may need additional state
for replica management if applied to a given DHT implementation. Subsequently, we
describe replica placement strategies defined and used by several DHTs, and discuss
their advantages/disadvantages.

List replication

In list replication, the set of replicas is chosen from a prefix of an already existent list.
Depending on the used list, it can be successor-list replication or leaf-set replication.

In successor-list replication (Stoica et al. 2001), Figure 2.4(a), the key of each item
is hashed in the DHT and assigned to the R closest successors nodes of that key.

The leaf-set replication (Rowstron and Druschel 2001; Maymounkov and Mazières
2002), Figure 2.4(b), is similar to successor-list replication, but gathers both successor
and predecessor nodes. Instead of storing an item on its closestR successor’s, the item
is stored on its bR

2
c closest successors and its bR

2
c closest predecessors.

For systems using successor-list replication the routing always proceeds clock-

22 2 Related work

N1

N4

N2
N8

N6

N3

N7

N5Insert Item h

2

0

1

3

h(k)

(a) Successor replica placement

N1

N4

N2
N8

N6

N3

N7

N5Insert Item k

2

0

13

h(k)

(b) Leaf-Set replica placement

N1

N4

N2
N8

N6

N3

N7

N5Insert Item x

2

0

1

3

h1(k)

h0(k)

h2(k)

h3(k)

(c) Multi Hashing replica placement

N1

N4

N2
N8

N6

N3

N7

N5Insert Item k

2

0

1

h(k)

(d) Path replica placement

N1

N4

N2
N8

N6

N3

N7

N5Insert Item k

2

0

1
3

h(k)

(e) Symmetric replica placement

Figure 2.4: Replica placement strategies

2.2 Data placement in DHTs 23

wise, while in systems using leaf-set replication routing is done in both ways, clock-
wise and anti-clockwise. However, as in one-hop DHTs each node may directly route
messages to all nodes, the two strategies behave the same.

Multi hashing replication

Some DHTs, CAN (Ratnasamy et al. 2001) and Tapestry (Zhao et al. 2001), instead
of a single hash function, use several hash functions to define in which nodes to place
data, Figure 2.4(c). In such a scheme, R hash functions are used to achieve a repli-
cation degree of R. Each item in the DHT gets R identifiers by applying the respec-
tive functions to the key value. Therefore, the item is stored at successor(h0(k)),
successor(h1(k)), . . . , successor(hR−1(k)).

A particular scheme of multi-hashing is rehashing, where the same hash is applied
to the result of the previous hashing. Therefore, each item is replicated at nodes:
successor(h(k)), successor(h(h(k))), successor(h(h(h(k)))), and so forth.

Path replication

In path replication, used in Tapestry (Zhao et al. 2001), Figure 2.4(d), an item is repli-
cated to nodes along the search path that is traversed during the routing of the message,
from the source to the destination node.

However, for one-hop DHTs, where any node can directly route messages to all
nodes, this strategy behaves as list replication strategy.

Symmetric replication

In symmetric replication (Ghodsi et al. 2007), Figure 2.4(e), each identifier in the
system is associated with R other identifiers. If identifier i is associated with identifier
j, then the node responsible for item i should also store the item j. Symmetrically,
the node responsible for item j should also store the item i. The identifier space is
partitioned into N

R
equivalence classes so that identifiers in an equivalence class are

all associated with each other. Any such partition will work, but, for simplicity, the
congruence classes modulo m is used, where N is the size of the identifier space and
m = N

R
for R replicas. Therefore, each node replicates the equivalence class of all

identifiers it is responsible for.

24 2 Related work

Discussion

The replica placement strategy has a high impact on both performance and availabil-
ity (Yu et al. 2006; Leslie et al. 2006; Ktari et al. 2007). Each strategy has its trade-offs
and no strategy is the best both in reliability and latency aspects.

While symmetric strategy has higher reliability it also has higher maintenance over-
head and additional complexity (Ktari et al. 2007). The simple list replication strategy
presents good results, while not requiring additional node state (Ktari et al. 2007). For
workloads that must have complete answers (that is do not tolerate missing items), the
multi-hashing strategy has higher availability than the symmetric strategy (Yu et al.
2006).

Moreover, the optimal solution is dependent on the workload. However, all existing
strategies are biased to some kind of a particular workload; thus, they are not suited for
a multi-tenant environment, where workloads with different requirements may coexist.

2.3 Large scale data stores

Web-scale applications need to manage very large volumes of structured data. This has
led to the emergence of several elastic and scalable distributed data stores designed by
major companies Google, Amazon, Yahoo! and Facebook.

In the following, we briefly present four available data stores. The chosen data
stores are the most representative; although several open source projects exist, they are
mostly implementations of some of the presented here.

Amazon’s Dynamo (DeCandia et al. 2007) is a highly available key-value storage
system. It has properties of both databases and DHTs. Although it isn’t directly ex-
posed externally as a web service, it is used as a building block of some of the Amazon
Web Services2, such as S33.

PNUTS (Cooper et al. 2008) is a massively scalable, hosted data management ser-
vice that allows multiple applications to concurrently store and query data. Its shared
service model allows multiple Yahoo! applications to share the same resources and
knowledge. PNUTS is a component of the Yahoo!’s Sherpa, an integrated suite of data
services.

2http://aws.amazon.com/
3http://aws.amazon.com/s3/

http://aws.amazon.com/
http://aws.amazon.com/s3/

2.3 Large scale data stores 25

Google’s Bigtable (Chang et al. 2006) is a distributed storage system for structured
data that was designed to manage massive quantities of data and run across thousands
of servers. Besides being used internally at Google for web indexing, Google Earth
and Google Finance, it is also used to store Google’s App Engine Datastore entities.
The Google’s App Engine Datastore API4 defines an API for data management in the
Google’s App Engine (GAE)5. GAE is a toolkit that allows developers to build scalable
applications in which the entire software and hardware stack is hosted at Google’s own
infrastructure, Software as a Service (SaaS).

Cassandra (Lakshman and Malik 2010) is a distributed storage engine initially de-
veloped by Facebook to be used at the Facebook social network site, and is now an
Apache open source project6. It is a highly scalable distributed database that uses most
of the ideas of the Dynamo architecture to offer a data model based on Bigtable’s data
model.

Sections 2.3.1, 2.3.2 present a detailed comparison of existing solutions regarding:
data model, and programming interface and architecture. Finally, sub section 2.3.3
presents a comparison of the design trade-offs of each system focusing on their limita-
tions.

2.3.1 Data models and Application Programming Interfaces (API)

The emergence of cloud computing and the demand for scalable distributed data stores
are leading to a revolution on data models. A common approach in all recent large
scale data stores is the replacement of the relational data model by a more flexible one.
The relational data model was designed to store highly and statical structured data.

Most of existing data stores use a simple key-value store or at most variants of the
Entity-Attribute-Value (EAV) model (Nadkarni and Brandt 1998). In the EAV, data
model entities have a rough correspondence to relational tables, attributes to columns,
tuples to rows and values to cells. However, despite each tuple being of a particular
entity, it can have its own unique set of associated attributes. This data model allows
to dynamically add new attributes that only apply to certain tuples. This flexibility
of the EAV data model is helpful in domains where the problem is itself amenable to
expansion or change over time. Another benefit of the EAV model that may help in

4http://code.google.com/appengine/docs/datastore/
5http://code.google.com/appengine/
6http://cassandra.apache.org/

http://code.google.com/appengine/docs/datastore/
http://code.google.com/appengine/
http://cassandra.apache.org/

26 2 Related work

the conceptual data design is the multi-value attribute in which each attribute can have
more than one value.

In the following, a detailed description of the data model and programming inter-
face for each of the data stores is introduced. Dynamo uses a simple key-value data
model, while others use some variant EAV. In order to ease the comparison, for each
data store we provide a standard representation of their data model and API. We use
the following notation:

a) A×B, product of A and B;

b) A+B, union of A or B;

c) A∗, sequence of A;

d) A ⇀ B, map of A to B; and

e) PA, power set of A.

Dynamo is modeled as:
K ⇀ (V × C) . (2.1)

Each value has a key associated to it and a context, represented by C, which encodes
system metadata, such as the tuple’s version, and is opaque to the application. Dynamo
treats both the key and the tuple, K and V , as opaque array of bytes.

P(V × C) get(K key)

put(K key, C context,V value)

Figure 2.5: Dynamo’s API

Dynamo offers a simple interface, Figure 2.5. The get operation locates the tuple
associated with the key, and returns a single tuple or a list of tuples with conflicting
versions. The put operation adds or updates a tuple also by key.

In PNUTS, data is organized into tables of tuples identified by a string, with dy-
namic typed attributes. Tuples of the same table can have different attributes,

String ⇀ (K ⇀ P(String × V)) .

Each tuple can have more than one value for the same attribute. The type for the
attributes, V , and for the key, K, can be typical data types, such as integer, string,

2.3 Large scale data stores 27

or the ”blob” data type for arbitrary data. The type for the attributes is dynamically
defined per attribute.

P(String × V) get-any(String tableName,K key)

P(String × V) get-critical(String tableName,K key, Double version)

P(String × V) get-latest(String tableName,K key)

put(String tableName,K key,P(String × V) value)

delete(String tableName,K key)

test-and-set-put(String tableName,K key,P(String × V) value, Double version)

K ⇀ P(String × V) scan(String tableName,PK selections,PString projections)

K ⇀ P(String × V) rangeScan(String tableName,(K ×K) rangeSelection,PString projections)

String ⇀ (K ⇀ P(String × V)) multiget(P(String ×K) keys)

Figure 2.6: PNUTS’s API

In PNUTS, as the table’s elements can be ordered or randomized, the available
operations per table differ, Figure 2.6. All tables support get-*, put, delete,
and scan operations. However, only ordered tables support selections by range:
rangeScan operation. While selections can be done by tuple’s key, scan, or speci-
fying a range, rangeScan, updates and deletes must specify the tuple’s key. PNUTS
supports a whole range of single tuple get and put operations with different levels
of consistency guarantees. Vary from a call where readers can request any version of
the tuple, with highly reduced latency, to a call where writers can verify that the tuple
is still at the expected version. Briefly, the get-any operation returns a possible stale
version of the tuple, get-critical returns a version of the tuple that is at least
as fresh as the version, get-latest returns the most recent copy of the tuple,
and test-and-set-put performs the tuple modification if and only if the version
of the tuple is the same as the requested version. Additionally, a multiget is
provided to retrieve multiple tuples from one or more tables in parallel.

Bigtable is a multi-dimensional sorted map,

K ⇀ (String ⇀ (String × Long ⇀ V)) . (2.2)

The index of the map is the row key, column name, and a timestamp. Column keys
are grouped into column families and they must be created before data can be stored
under any column key in that family. Data is maintained in lexicographic order by row
key, where each row range is dynamically partitioned. Each cell in BigTable can have
multiple versions of the same data indexed by timestamp. The timestamps are integers
and can be assigned by Bigtable or by client applications. The type of the row key, K,
and the value for columns V , is a string.

28 2 Related work

put(K key,String ⇀ (String × Long ⇀ V) rowMutation)

String ⇀ (String × Long ⇀ V) get(K key,String × String columns)

delete(K key,String × String columns)

K ⇀ (String ⇀ (String × Long ⇀ V)) scan(K startKey,K stopKey,String × String columns)

Figure 2.7: Bigtable’s API

The Bigtable API, Figure 2.7, provides operations to write or delete tuples (put
and delete), to find individual tuples (get) or iterate over a subset of tuples (scan).
For all operations, the string representing the column name may be a regular expres-
sion. Clients can iterate over multiple column families and limit the rows, columns,
and timestamps. The results for both get and scan operations are grouped per col-
umn family.

Cassandra data model is an extension of the Bigtable data model,

K ⇀ (String ⇀ (String ⇀ (String × Long ⇀ V))) . (2.3)

It exposes two types of column families: simple and super. Simple column families
are the same as column families in Bigtable, and super column families are families of
simple column families. Cassandra sorts columns either by time or name. In Cassan-
dra, the type for rows key, K, is also a string with no size restrictions.

put(K key,String ⇀ (String ⇀ (String × Long ⇀ V)) rowMutation)

String ⇀ (String ⇀ (String × Long ⇀ V)) get(K key,String × String × String columns)

K ⇀ (String ⇀ (String ⇀ (String × Long ⇀ V))) range(K startKey,K endKey,

String × String × String columns)

delete(K key,String × String × String columns)

Figure 2.8: Cassandra’s API

The Cassandra API, Figure 2.8, is mostly the same of Bigtable’s, except for the
scan operation. The results of get are grouped both per super column family and
column family, and ordered per column. Additionally, Cassandra’s open source project
introduced an additional range operation in version 0.6.

2.3.2 Architecture

Large scale data stores are distributed systems aiming at hundreds or thousands of
machines in a multi-tenant scenario, and must be able to store and query massive
quantities of structured data. At this scale, machine failures are frequent; therefore,

2.3 Large scale data stores 29

data stores must replicate data to ensure dependability. Enabling distributed processing
over this kind of massive-scale storage poses several new challenges: problems of
data placement, dependability and distributed processing. Given these challenges and
their different design requirements, all the systems under consideration came up with
different architectures.

These architectures may be categorized in two types: fully decentralized and hier-
archical. In the fully decentralized type, physical nodes are kept organized on a logical
ring overlay, such as Chord (Stoica et al. 2001). Each node maintains complete infor-
mation about the overlay membership therefore, being able to reach every other node.
Dynamo and Cassandra fall in this category, Figures 2.9(d) and 2.9(a). In the hierar-
chical type, a small set of nodes is responsible for maintaining data partitions, and to
coordinate processing and storage nodes. Both Bigtable and PNUTS, Figures 2.9(b)
and 2.9(c), follow this type; thus, they partition data information into tablets, which
are horizontal partitions of tuples. Bigtable is composed of three different types of
servers: master, tablets, and lock servers. Master servers coordinate the tablet servers
by assigning and mapping tablets to them, and redistributing tasks as needed. The
architecture of PNUTS is composed of regions, tablet controllers, routers, and storage
units. The system is divided into regions where each region has a complete copy of
each table. Within each region, the tablet controller coordinates the interval mapping
that maps tablets to storage units.

Despite having different architectures, all of the presented data stores share com-
mon components (request routing and storage) and use common techniques (data par-
titioning and replication). Figure 2.9, shows the architecture of each system and high-
lights the layers responsible for each component. In the following, we focus on those
components pointing out the similarities and differences of their implementation in
each data store.

The characterization of the architecture is directly related to the way each system
performs data partitioning, an aspect of major importance. While in data stores, using
a fully decentralized architecture, the data partition is done in a fully decentralized
manner through consistent hashing, in the hierarchical-based architecture a small set
of nodes is responsible for maintaining the data partitions. In PNUTS, data tables are
partitioned into tablets by dividing the key space in intervals. For ordered tables, the
division is at the key-space level, while in hashed tables it is at the hash-space level.
Each tablet is stored into a single storage unit within a region. In Bigtable, the row

30 2 Related work

Clients

Partition

Storage

Replication

Request
Routing

DHT

(a) Dynamo

Clients

Tablet
Servers

Master
Server

GFS

Lock
Servers

Partition

Storage

Replication

Request
Routing

(b) Bigtable

Region 2

Clients

Region 1

Storage
Servers

Routers

Tablet
Controller

YMB

Partition

Storage

Replication

Request
Routing

Storage
Servers

Routers

Tablet
Controller

(c) PNUTS

Clients

Partition

Storage

Replication

Request
Routing

DHT

(d) Cassandra

Figure 2.9: Large scale data store architectures

2.3 Large scale data stores 31

range is dynamically partitioned into tablets distributed over different machines.
Another mandatory aspect of these data stores is replication, which is used not

only to improve read operations’ performance by means of load balancing, but also to
ensure fault tolerance. Cassandra and Dynamo use a successor-list replication strategy.
In PNUTS, the message broker ensures inter-region replication, using asynchronous
primary backup, while in Bigtable it is done at the storage layer by GFS (Ghemawat
et al. 2003).

Besides replication, all data stores use a component to ensure that write operations
are made durable, persistent. While Dynamo and Cassandra rely on local disks for
persistency, PNUTS and Bigtable use a storage service. However, Bigtable uses the
storage service in a transparent manner regarding its location, while PNUTS maintains
information about the mapping from tuples to storage nodes, in a per tablet granularity.

Due to the multiple nodes used and the partition of data, every time a request is
issued to the data store, it has to be routed to the node responsible for that piece of data.
In Cassandra, any incoming request can be issued to any node in the system. Then,
the request is properly routed to the responsible node. In PNUTS, when a request
is received, the router determines which tablet contains the tuple and which storage
node is responsible for that tablet. Routers contain only a cached copy of the interval
mapping that is maintained by the tablet controller. In Dynamo, the routing is handled
by the client (that is the client library is partition aware), directly sending the request
to the proper node. Bigtable also needs a client library that caches tablet locations;
therefore, clients send the requests directly to the proper tablet server.

2.3.3 Discussion

32 2 Related work

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
of

da
ta

st
or

es
D

yn
am

o
PN

U
T

S
B

ig
ta

bl
e

C
as

sa
nd

ra
D

at
a

M
od

el
ke

y
va

lu
e,

ro
w

st
or

e
E

AV
,r

ow
st

or
e

co
lu

m
n

st
or

e
co

lu
m

n
st

or
e

A
PI

si
ng

le
tu

pl
e

si
ng

le
tu

pl
e

an
d

ra
ng

e
si

ng
le

tu
pl

e
an

d
ra

ng
e

si
ng

le
tu

pl
e

an
d

ra
ng

e
D

at
a

Pa
rt

iti
on

ra
nd

om
ra

nd
om

an
d

or
de

re
d

or
de

re
d

or
de

re
d

O
pt

im
iz

ed
fo

r
w

ri
te

s
re

ad
s

w
ri

te
s

w
ri

te
s

C
on

si
st

en
cy

ev
en

tu
al

at
om

ic
or

st
al

e
re

ad
s

at
om

ic
ev

en
tu

al
M

ul
tip

le
Ve

rs
io

ns
ve

rs
io

n
ve

rs
io

n
tim

es
ta

m
p

tim
es

ta
m

p
R

ep
lic

at
io

n
qu

or
um

as
yn

c
m

es
sa

ge
br

ok
er

fil
e

sy
st

em
qu

or
um

D
at

a
C

en
te

r
Aw

ar
e

ye
s

no
ye

s
ye

s
Pe

rs
is

te
nc

y
lo

ca
la

nd
pl

ug
ga

bl
e

st
or

ag
e

se
rv

ic
e

an
d

cu
st

om
/M

yS
Q

L
re

pl
ic

at
ed

an
d

di
st

ri
bu

te
d

fil
e

sy
st

em
lo

ca
la

nd
cu

st
om

A
rc

hi
te

ct
ur

e
de

ce
nt

ra
liz

ed
hi

er
ar

ch
ic

al
hi

er
ar

ch
ic

al
de

ce
nt

ra
liz

ed
C

lie
nt

L
ib

ra
ry

ye
s

no
ye

s
no

2.3 Large scale data stores 33

Cloud-based data stores must adapt to multiple tenants with diverse performance,
availability and dependability requirements. As stated by the CAP theorem, it is im-
possible to provide at the same time: network partition tolerance, strong consistency
and high availability. However, different combinations of two of these properties are
possible; thus, cloud-based data stores must establish reasonable trade-offs.

As described in previous sections, each data store, depending on its internal design
requirements, has specific trade-offs. Table 2.1 presents a brief comparison of the
analyzed data stores.

Data Model The data model type of a data store, in addition to determine its expres-
siveness, also impacts how data is physically stored in disks. In a row-based data model
(Dynamo and PNUTS), tuples are stored contiguously on disk. While in a column ori-
ented storage (Bigtable and Cassandra) columns may not be stored in a contiguously
fashion. For that reason, column-oriented storage is only advantageous if applications
only access a subset of columns per request.

API The API of data stores is not only highly coupled with their data model, but
also with the supported data partition strategies. Single tuple operations are highly
related to the data model, but the availability of a range operation is dependent on
the existence of an ordered data partition strategy. Therefore, Dynamo doesn’t offer a
range operation like the other proposals. Still regarding the API, none of the presented
data stores distinguish between inserts and updates, and do not consider general multi-
item operations which are common over data-intensive workloads. The put operation
stores the tuple with a given unique key, and if a tuple with the same key already exists
in the system, it gets overwritten.

Reads vs Writes Another important trade-off is the optimization either for read or
write operations. A key aspect for this is how data is persistently stored. In write
optimized storage (for example Bigtable and Cassandra) records on disk are never
overwritten, and multiple updates to the same tuple may be stored in different parts of
the disk. Therefore, writes are sequential and thus fast, while a read is slower, because
it may need multiple I/O operations to retrieve and combine several updates. Dynamo
is also optimized for writes, because the conflict resolution (as further explained) is
done in reads, ensuring that writes are never rejected.

34 2 Related work

Consistency All data stores only offer single tuple consistency operations. However,
they differ from each other in the consistency given per tuple. The system with weaker
consistency guarantees is Dynamo. It exposes data consistency and reconciliation logic
issues to the application developers through conflict resolution methods, which leads
to a more complex application logic. Moreover, the application must tune the number
of tuple replicas N, read quorum R and write quorum W. Therefore, stale data can be
read and conflicts may occur, which must be handled by the application. The conflict
resolution can be syntactic or semantic based on the business logic. As multiple ver-
sions of the same data can coexist, the update of a tuple in Dynamo explicitly specifies
which version of that tuple is being updated.

PNUTS also chooses to sacrifice consistency. PNUTS offers methods with differ-
ent levels of consistency guarantees. Thus, final consistency guarantees depend on the
specific calls made to the system. Although every reader will always see some consis-
tent version of a tuple, it may be outdated. Therefore, the burden of strong consistency
is left to the application that must take into account the item’s version, and use it to
ensure consistent updates and avoid stale reads.

In Bigtable, every read or write of a single tuple is atomic. However, every update
on a given column of the tuple specifies a timestamp; therefore, creates a new version.
Cassandra’s consistency is similar to Dynamo with the value’s timestamp defining its
version.

Replication Regarding replication, in order to tolerate full data center outages, data
stores must replicate tuples across data centers. While Bigtable isn’t data center aware,
Dynamo, Cassandra and PNUTS are. Dynamo is configured such that each tuple is
replicated across multiple data centers. PNUTS’s architecture was clearly designed as
a geographically distributed service, where each data center forms a region and a mes-
sage broker provides replication across regions. Cassandra also supports a replication
strategy that is data center aware, and allows to ensure that each data item is replicated
in different data centers, using Zookeeper.

Common Trade-Offs All existing large scale data stores provide two major trade-
offs: no table joins, and single tuple consistency. The reason all share this first trade-
off is that making a relational join over data, which is spread across many nodes, is
difficult, because it may imply that every node would have to pull data from all nodes

2.4 Query processing 35

for each tuple. However, most applications still need joins, and they must be done
manually.

Regarding the second trade-off, offering full database consistency through global
transactions would restrict scalability, because nodes would have to achieve global
agreement.

Almost all existing large scale data stores focus on applications that have minor
consistency requirements and choose network partition tolerance and high availability
properties of the CAP triangle. They are in strong contrast with traditional relational
databases forfeiting complex relational and processing facilities, and most strikingly,
transactional guarantees common in traditional RDBMS.

However, a midway between the two opposites (large scale data stores and tradi-
tional RDBMS) is possible. There’s no reason why a scalable and replicated database
cannot be used with SQL. Recent work on offering more complex processing on large
scale data stores is reviewed in the next section.

2.4 Query processing

DBMS are a powerful tool to create and manage large amounts of data in an efficient
manner, while safely persisting it. DBMS derive from a a large body of knowledge
and technology developed over several decades (Stonebraker and Hellerstein 1998).

DBMS changed significantly after the seminal paper by Codd (Codd 1970), where
he proposed relational databases. In relational databases, data is organized as tables
called relations, and programmers are not concerned with the storage structure, but
instead express queries in a high-level language. The most important query language
based on the relational model is the Structured Query Language (SQL).

Relational Database Management Systems (RDBMS) are complex software sys-
tems with several components. Figure 2.10 summarizes the main components of a
relational database management system. Query processing in a relational and trans-
actional database processing system can be regarded as two logical processing stages,
making use of different functional blocks: query and storage engines.

Briefly, the query engine is responsible for compiling, planning, and optimizing
each query, thus, obtaining a physical plan ready for execution. The plan is prepared
from a set of available physical operators, including both generic implementations of

36 2 Related work

Storage Engine
Cache

Query Engine
Compiler

Optimizer

Execution

Transactions

Available Operators

Selection Projection Join

Seq. Scan Index Scan
Statistics

Locks

Log

Block I/O

Block
Row
Row

Row

Block
Row
Row

Row

...

...

Figure 2.10: Query engine architecture.

relational operators and scan operators provided by the storage manager. The storage
engine is responsible for providing scan operators that encapsulate physical representa-
tion of data and indexing. Moreover, I/O and caching, recovery and isolation are also
responsibilities of the storage engine. In traditional RDBMS, providing such scans
efficiently makes use of a cache that keeps a portion of the data stored on disk, and op-
timizes the usage of block I/O. By implicitly using locks or keeping multiple versions
of data items, the storage engine enforces the isolation criteria. By using a persistent
log, it also enforces transactional atomicity and durability.

The query engine offers a relational SQL based API for applications. A query
engine instance comprises two main stages: compilation and execution of the query.
The compilation stage is divided into three phases:

1. Starting from an initial SQL query, the query is parsed, and a parse tree for the
query is generated;

2. The parse tree is converted to an initial implementation plan, represented by an
algebraic expression, which is then optimized using algebraic laws - the logical
query plan;

3. The physical query plan is then constructed from the logical query plan, which
implies the choice of the physical operators (that is, algorithms) to be used and

2.4 Query processing 37

the order in which they must be executed based on the metadata statistics, pro-
vided by the storage layer in order to select an efficient execution plan.

In the second stage, the physical plan with the expected lowest cost is executed.
However, it should be noted that at phase three of the compilation stage the algorithms
for each relational operator are chosen; although the execution of a query is as previ-
ously determined by the physical query plan, the execution stage is responsible for the
actual implementation of algorithms that manipulate the data of the database.

The interface exposed to the query engine by the storage engine, framed in red in
Figure 2.10, can be summarized as follows:

• A set of scan operators and row abstractions, encapsulating all details regarding
physical data organization, I/O, caching, versioning and locking. In particular,
the row abstraction must allow pinning and updating.

• Meta-information, specifically, logical data layout and low-level statistics.

• Primitives for transaction demarcation, namely,the setup of a transactional con-
text and termination.

Traditional relational database management systems are based on highly central-
ized, rigid architectures that fail to cope with the increasing demand for scalability
and dependability, and are not cost-effective. High performance RDBMS invariably
rely on mainframe architectures or clustering based on a centralized shared storage
infrastructure. These, although easy to setup and deploy, often require large invest-
ments upfront and present severe scalability limitations. Even distributed and paral-
lel databases that have been around for decades (Özsu and Valduriez 1999), build on
the same architecture and focus on the problem of guaranteeing strong consistency
to replicated and distributed data. Much of the work has focused on distributed query
processing (Kossmann 2000) and distributed transactions. The recent trend has been to
develop techniques to ease the transition path from relational databases to large scale
data stores.

2.4.1 Rich processing in large scale data stores

Recently, there have been some projects that aim to ease the transition path from rela-
tional databases to large scale data stores. On one hand, some of those projects intend

38 2 Related work

to mitigate the constraint of simplicity and heterogeneity of the query interface by pro-
viding an interface based on SQL, namely BigQuery7, Hive (Thusoo et al. 2010) and
PIQL (Armbrust et al. 2010).

BigQuery is a Google web service built on BigTable. It aims at providing a means
to query large datasets in a scalable, interactive and simple way. It uses a non-standard
SQL dialect; therefore, it only offers a subset of operators, such as selection, pro-
jection, aggregation and ordering. Joins and other more complex operators are not
supported. In addition, once data is uploaded it cannot be changed (only more data can
be appended), so it does not support update statements.

The Hive system was initially developed at Facebook and is now an Apache project8.
Hive is built on Hadoop, a project that encompasses the HDFS and the MapReduce
framework. Similarly, Hive also defines a simple SQL-like query language to query
data. In contrast, it offers more complex operators, such as equi-joins, which are con-
verted into map/reduce jobs, and unions. However, like BigQuery, Hive is aimed at
data analysis (OLAP) of large datasets, that is, asynchronous processing.

PIQL allows more complex queries on large scale data stores, while maintaining
predictable performance on those complex operations. Providing strict bounds on the
number of I/O operations that will be performed by some complex operations is use-
ful, but applications must be rewritten using the new language. PIQL also restricts
the set of available operations and aggregate functions, and joins (only equi-joins are
supported).

On the other hand, there are a few projects that aim at offering features typical from
RDBMS, such as complex operations and secondary indexing, as well as transactional
guarantees (ACID) over a large scale data store, specifically: CloudTPS (Wei et al.
2011) and MegaStore (Baker et al. 2011).

CloudTPS chooses to provide strong consistency, but may become unavailable
in case of network failures. It offers full transactional guarantees over any NoSQL
database, and in order to do so it introduces Local Transaction Managers (LTM). Ac-
cording to the load in the system, there may be several instances of LTM each holding
a copy of a partition of data stored in the NoSQL data store. Transactions across sev-
eral LTM are implemented using a Two-Phase Commit protocol (2PC). In addition to
the simple operations provided by a NoSQL datastore, CloudTPS also supports join
operations, but with several restrictions on the join and transaction types. Only a subset

7http://code.google.com/intl/pt-PT/apis/bigquery/
8http://hive.apache.org/

http://code.google.com/intl/pt-PT/apis/bigquery/
http://hive.apache.org/

2.4 Query processing 39

of join queries are supported, and they are restricted to read-only transactions.

MegaStore approach is very similar to CloudTPS. It is built on BigTable and im-
plements some of the features of RDBMS, such as secondary indexing. Nonetheless,
join operations must be implemented on the application side. Therefore, applications
must be written specifically for MegaStore, using its data model, and queries are re-
stricted to scans and lookups. Differing from CloudTPS, data is only consistent if in
the same partition.

2.4.2 Discussion

Current work on offering some of the traditional database features on large scale data
stores aims to ease the transition path from relational databases to large scale data
stores. However, they only offer a subset of the processing facilities offered by SQL
and define new query languages similar to SQL. This implies that applications must
be written specifically for them using their data model, and some queries must be
written in application code. This is due to the lack of support for complex processing
as general joins are not offered by those systems.

However, most Web-scale applications, such as Facebook, MySpace, and Twitter,
remain SQL-based for their core data management, and without full SQL support, it is
hard to provide a smooth migration from RDBMS to large scale data stores. This is a
hurdle to the adoption of large scale data stores by a wider potential market.

While traditional RDBMS architectures include several legacy components that
are not suited to modern hardware, and impose an important overhead to transaction
processing (Harizopoulos et al. 2008), limiting both performance and scalability, some
RDBMS components can be reused when using a large scale data store.

While the storage engine must be replaced, most of the query engine components
can be reused. Reusing the query engine from an existing relational database manage-
ment system requires that a set of abstractions (scan operators and row abstractions;
meta-information, specifically, logical data layout and low-level statistics; and primi-
tives for transaction demarcation) are provided, that the corresponding interfaces are
identified and re-implemented.

40 2 Related work

2.5 Summary

DHTs are a building block for large scale data stores, and they must define data place-
ment strategies to define how data items are assigned to nodes: single node strategies
and replica placement strategy.

Regarding the former, existing single node data placement strategies are: random,
ordered and SFC-based. Each presented strategy has its trade-offs and none con-
sider general multi-item operations, which are common over data intensive workloads.
Moreover, to our knowledge, existing DHTs use a single strategy for data placement.
This prevents the data placement to adapt and to be optimized to the clients’ workloads,
and, in the specific context of cloud computing, to suit the multi-tenant architecture.

The replica placement strategy has a higher impact on both performance and avail-
ability (Yu et al. 2006; Leslie et al. 2006; Ktari et al. 2007). Each strategy has its
trade-offs and no strategy is better both in reliability and latency aspects. The best
solution depends on the workload. However, all existing strategies are biased to some
kind of workload, and are not suited for a multi-tenant environment, where workloads
with different requirements may coexist.

Cloud-based large scale data stores must adapt to multiple tenants with diverse
performance, availability and dependability requirements. However, in face of the
impossibility stated by the CAP theorem, Cloud-based data stores must establish rea-
sonable trade-offs. Almost all existing large scale data stores focus on applications that
have minor consistency requirements and choose network partition tolerance and high
availability properties of the CAP triangle. They are in strong contrast with traditional
relational databases forfeiting complex relational and processing facilities, and most
strikingly, transactional guarantees common in traditional RDBMS.

However, a midway between the two opposites (large scale data stores and tradi-
tional RDBMS) is possible. Recent work on offering some of the traditional database
features on large scale data stores focuses on a subset of the processing facilities of-
fered by RDBMS, and defines new query languages similar to SQL. The lack of full
SQL support is a hurdle to the adoption of large scale data stores by a wider potential
market.

Typical RDBMS components can be reused when using a large scale data store.
While the storage engine must be replaced, most of the query engine components can
be reused to provide full SQL support on large scale data stores.

Chapter 3

DataDroplets

The management of distributed objects on a large peer-to-peer network raises many
and interesting challenges. Some are inherent to the large scale of the system, which
is not forgiving of centralized algorithm or flooding protocols, and require judicious
control of recurring, system wide, a priori negligible tasks. Others are due to the
dynamics of the system’s membership and each node current capabilities.

Existing approaches to large scale data stores lie at the edges of the strong con-
sistency versus scalability trade-off. The goal of this thesis is to extend the currently
disjoint design space by enabling large scale data stores to scale, while offering a well-
defined consistency model. Moreover, we expect to find the right trade-offs among
flexible usage, efficiency, fault tolerance and quality of service.

In this chapter, we present DataDroplets a key-value store targeted at supporting
very large volumes of data, leveraging the individual processing and storage capa-
bilities of a large number of well connected computers. First, Section 3.1 presents
Clouder, a novel architecture for large scale data stores, where DataDroplets plays a
major role. Then, Section 3.2 details the design of DataDroplets encompassing the
supported data placement strategies, and a novel correlation-aware placement strat-
egy for efficient multi-item operations. Section 3.3 describes DataDroplet’s prototype;
finally, Section 3.4 presents an extensive evaluation of DataDroplets.

3.1 Clouder

We seek to devise a flexible, efficient and dependable large scale data store able to
manage very large sets of variable size objects, and to coordinate in place processing.

41

42 3 DataDroplets

Our target is local area large computing facilities composed of tens of thousands of
nodes under the same administrative domain. The service should be aligned with the
emerging Cloud Computing conceptual model. Nodes are not necessarily dedicated,
but can be shared by enterprise or academic common tasks. We intend to design a
large scale data store that seamlessly fragments and replicates application objects. The
system should be capable of leveraging replication to balance read scalability and fault
tolerance.

3.1.1 Assumptions

Most medium to big enterprises and universities have large computing facilities com-
posed of tens of thousands of desktop machines that are used to support their collab-
orators. These machines are underused and have available resources, such as storage,
memory, network bandwidth and processing power. Furthermore, these machines are
interconnected by a high-bandwidth network, and as they are under the same admin-
istrative domain they are trustworthy. We think that these machines are a valuable
resource, which can be used to provide a distributed data store thus leveraging ma-
chines’ capabilities.

The target scenario of Clouder ranges from the typical data center to organizations
with a large existing computing infrastructure, such as universities and global enter-
prises, where the common denominator is large scale and high dynamism. It should
be able to leverage large computing facilities composed of tens of thousands of nodes
under the same administrative, or at least, ownership domain. Unlike current deploy-
ments (DeCandia et al. 2007), some of these nodes are not expected to be functionally
or permanently dedicated to the data store, but can be commodity machines mainly
dedicated to common enterprise or academic tasks.

At the same time, the boom of the Web 2.0 led to the emergence of new Web
applications or services, such as social network applications that need to store and
process large amounts of data. These applications require flexible data stores that
easily evolve and scale to their growing demands. Although these applications can
have lower consistency requirements, most of them cannot afford to deal with conflicts
that arise from concurrent updates. Those applications require richer client APIs than
existing data stores, which lead to data stores with in-place processing.

To achieve high availability, all the existing data stores rely on high levels of
service-dedicated infrastructures, which make them unsuitable to leverage other very

3.1 Clouder 43

large, but less reliable, networks with underused storage and processing resources,
such as those found in banks and universities.

Oppositely, Clouder is designed to leverage these large computing facilities com-
posed of tens of thousands of nodes sharing a reliable high-bandwidth network under
the same administrative domain. As nodes are interconnected by a high-bandwidth
network, bandwidth consumption is not a concern. However, we expect a controlled
churn rate typical of an institutional, well administered, computing network. Further-
more, we assume the machines have available resources (storage, memory, network
bandwidth and CPU). Applications and users of Clouder machines are trustworthy,
rather than malicious.

Nonetheless, we also assume a smaller set of nodes, from tens to hundreds that
are in a controlled environment, representing an upfront investment; therefore, are
more reliable than the nodes in the large computing facilities. These machines are
interconnected by a more reliable network infrastructure that has small latency and
little variance over time. This set of nodes is the target environment for DataDroplets,
as further explained.

3.1.2 Architecture

The proposed architecture for Clouder is driven by a careful analysis of client require-
ments and expectations that could be broadly divided in two major domains: i) client
interface and concurrency control, and ii) data storage itself and low level processing.
Most strikingly, this is the approach taken by traditional RDBMS and sidestepped by
new data store proposals. As a matter of fact, in RDBMS the client has access to a
clearly defined interface that allows the specification of details, such as isolation guar-
antees and primitives for performance tuning such as indexes, but hides the details of
how data is actually stored, maintained and processed (data independence). This is
in sharp contrast with popular data processing approaches, such as MapReduce (Dean
and Ghemawat 2008).

To manage very large distributed sets of data, two main approaches prevail: struc-
tured network overlays (Ratnasamy et al. 2001; Stoica et al. 2001; Rowstron and Dr-
uschel 2001), in which all nodes are logically organized in a well-known structure; and
unstructured network overlays (Pereira et al. 2003; Jelasity and Babaoglu 2005; Car-
valho et al. 2007), in which nodes are not (a priori) structured but are probabilistically
managed. The structured approach heavily depends on the attributes and adjustment of

44 3 DataDroplets

the logical overlay to the underlying physical network. A correct overlay contributes
to an efficient communication, leveraging nodes and links with higher capacity, local-
ity, and so forth. Furthermore, as the overlay provides approximate views of the whole
system, it is possible to attain reasonable guarantees of message delivery and order-
ing. On the other hand, the usability of a structured overlay is limited by the dynamics
of the system’s membership. Changes on the set of participants lead to recalculating
the overlay which, in the presence of high churn rates, can be impractical. On the
contrary, an unstructured network does not rely on any a priori global structure, but
on basic gossip communication. Each node uses local information about its neighbor-
hood, and relays information to a random subset of its neighbors. These protocols can
ensure a high probability of message delivery. Due to their unstructured properties,
gossip communication is naturally resilient to churn and faults and simple to maintain.

Clouder adopts both approaches for the management of two collaborating layers,
a soft and a persistent state subsystem of distinct structural and functional characteris-
tics, Figure 3.1.

On top, a soft-state layer is responsible for handling client requests and avoiding is-
sues, such as conflicts that eventually arise due to concurrent accesses. These problems
require a careful ordering of requests; thus, coordination among participating nodes.
This is best achieved by a structured DHT-based approach where nodes partition the
key-space among themselves, in order to achieve load-balancing and unequivocal re-
sponsibility for partitions (Stoica et al. 2001). With potentially conflicting requests
ordered, the remaining procedure of performing the actual read or write over the data
is delegated to the persistent-state layer below. As the soft-state layer only carries sim-
ple and lightweight operations over metadata, which can be maintained in memory,
we expect it to be moderately sized, up to hundreds of nodes; thus, manageable with
a structured approach. In fact, on the event of a catastrophic failure or when a new
node joins this layer, metadata can be reconstructed from the data reliably stored at the
underlying persistent-state layer.

A more efficient design could take advantage of spare capacity at the soft-state
layer to serve as a tuple cache and take advantage of relations among tuples to improve
the performance of the underlying layer, for instance by adopting workload-aware data
placement strategies.

This chapter focuses on the major problems of the soft-state layer while the work
on the underlying persistent-state layer is left for future work. Therefore, Section 3.1.3

3.1 Clouder 45

Soft-state layer

Clients

Partition

Storage

Replication

Request
Routing

DHT

Persistent-state Layer

Replication

Figure 3.1: Clouder architecture

describes the main design ideas for the persistent-state layer and the remaining sections
of this chapter focus on the soft-state layer.

3.1.3 Epidemic-based persistent-state layer

In this section, the main design ideas to the epidemic-based persistent-state layer are
described. More detailed design ideas for the persistent-state layer can be found in a
position paper (Matos et al. 2011).

The essential properties of a low-level storage system are: i) data availability and
ii) performance. Without the first, the system is unusable; the second makes it desir-
able. The initial approach for the persistent-state layer assumes simple read and write

46 3 DataDroplets

operations. They are ordered and identified with a request version. Any node in the
system may receive requests to perform such operations.

Data availability is mainly affected by failures and churn, as data present in offline
nodes becomes inaccessible. The only way to cope with unavailability, due to offline
nodes is by redundancy. Thus, the main concern is how to achieve and maintain ad-
equate redundancy levels. Despite the redundancy strategy used this directs us to the
question: how many nodes need to replicate an item.

Upon a write request, it is necessary to ensure that several copies of the item are
spread throughout the system for durability. Due to the low capacity of individual
nodes and high churn rates, it is impossible to track down the state of individual nodes,
and make globally informed data placement decisions. The strategy is instead based
on a global dissemination/local decision approach. The key idea is to spread data in
an epidemic fashion (Eugster et al. 2003; Pereira et al. 2003; Birman et al. 1999), and
have nodes locally decide if they need to store that data.

Restricted by the impossibility to store all data in a single node and by the required
redundancy level, each node needs to locally decide if it will keep the data. The idea is
to address this by means of local sieves that should retain only small fractions of data.
Thus, upon reception of a new message, nodes locally decide if the message falls into
the sieve range and relay it to fanout neighbors. This is in fact similar to what is done
in structured DHT approaches, where each node is responsible for a given portion of
the key space (Stoica et al. 2001; Rowstron and Druschel 2001).

The sieve function can be computed locally in a random fashion or can take into
account some similarity metric, either computed by the node itself or as hinted by the
soft-state layer. The only correctness requirement is that all possibilities in the key
space are covered in order to avoid data-loss. This also gives enough flexibility to
cope with nodes with disparate storage capabilities, as it is only a matter of adjusting
the sieve grain in order to impact the amount of stored data. A simple sieve function
could simply store an item locally with probability given by 1/number of nodes.
The number of nodes could be also estimated in an epidemic manner as in Cardoso
et al. (Cardoso et al. 2009). Using replication, the sieve function could be simply
extended to take into account the replication degree, r, as r/number of nodes.

The other issue to address is the maintenance of the redundancy levels according to
the redundancy strategy chosen, which should ensure that a minimal number of copies
of every item exists in the system. Again due to scale and churn, a centralized de-

3.1 Clouder 47

terministic approach is infeasible; thus, we must rely on probabilistic epidemic-based
methods. Those methods, based on random walks (Gkantsidis et al. 2006; Massoulié
et al. 2006), allow each node to obtain a uniform sample of the data stored at other
nodes, and eventually determine how many copies of the items it holds exist in the
system.

Whereas data availability is mainly concerned with how many nodes need to hold
replicas of a given item, data performance is related to where those items actually are.
There are several strategies to improve performance in such a system, here we consider
the following: i) collocation of related items, and ii) ordering of items.

The most straightforward approach to item co-location is by using smarter sieve
functions that are able to take advantage of tuple correlation, instead of blindingly
keep items based on a key; thus, co-locate related items.

The other essential issue to improve performance is the ordering of items, which
would enable efficient range scans of items and the construction of advanced ab-
stractions, such as indexes; an essential performance feature of traditional relational
database management systems that is still lacking on new generation data stores. This
problem becomes more evident when data needs to be drawn from several nodes,
which is, at first, beneficial due to the ability to perform parallel reads, but raises
several interesting challenges as node organization is essential to obtain adequate per-
formance.

To attain such ordering, as nodes cannot store all the data locally, the natural ap-
proach is to order nodes such that each node knows the next node from which data
needs to be retrieved/processed. In an overlay network, this reduces to establishing the
appropriate neighbor relations among nodes taking into account the values they store.
This semantic organization of nodes clearly calls to an approach based on content-
based systems, which are precisely suited to arrange nodes taking into account the
values of items they hold (Tran and Pham 2009; Chand and Felber 2005).

The persistent-state layer of Clouder can be exploited to offer simple summaries,
such as counts or maximums. Interestingly, it is straightforward to offer simple ag-
gregations to clients with minimal overhead. In fact, basic distributed computations
are already done in order to estimate the data distribution of a given parameter; thus,
it is simply a matter of exposing such results to the soft-state layer. This is attractive
as those computations are likely to be required for attributes where an index or range
scan is already built; thus, can be obtained at no cost.

48 3 DataDroplets

3.2 DataDroplets

DataDroplets is a key-value store targeted at supporting very large volumes of data,
leveraging the individual processing and storage capabilities of a large number of well
connected computers. It offers a simple application interface providing the atomic
manipulation of key-value items, and the establishment of arbitrary relations among
items.

In existing proposals, contrary to traditional RDBMS, there is no standard API to
query data in data stores. Most of existing Cloud based data stores offer a simple data
store interface that allows applications to insert, query and remove individual tuples
or at most range queries based on the primary key of the tuple. Regardless of using a
simple key-value interface or flavors of the EAV model (Nadkarni and Brandt 1998),
thus disclosing more details on the structure of the tuple, current systems require more
ad hoc and complex multi-tuple queries to be done outside of the data store, using
some implementation of the Map Reduce (Dean and Ghemawat 2008) programming
model: Yahoo’s PigLatin (Olston et al. 2008), Google’s Sawzall (Pike et al. 2005), or
Microsoft’s LINQ (Meijer 2011).

Although this unveils the possibilities of what can be done with data, it has negative
implications in terms of ease of use, and in the migration from current RDBMS-based
applications. Even worse, if the data store API does not have enough operations to
efficiently retrieve multiple tuples for the ad hoc queries they will incur in a high
performance hit. These ad hoc queries will mostly access a set of correlated tuples.
Zhonk et al. have shown that the probability of a pair of tuples being requested together
in a query is not uniform, but often highly skewed (Zhong et al. 2008). They have also
shown that correlation is mostly stable over time for real applications. Furthermore, it
is known that when involving multiple tuples in a request to a distributed data store,
it is desirable to restrict the number of nodes which actually participate in the request.
Therefore, it is more beneficial to couple related tuples tightly, and unrelated tuples
loosely, so that the most common tuples to be queried by a request would be those that
are already tightly coupled. An important aspect of DataDroplets is the multi-tuple
access that allows to store and retrieve large sets of related data efficiently at once.

3.2 DataDroplets 49

3.2.1 Data model

Multi-tuple operations leverage disclosed data relations to manipulate sets of compa-
rable or arbitrarily related elements. Therefore, the DataDroplets data model supports
tags that allow to establish arbitrary relations among tuples,

String ⇀ (K ⇀ (V × PString)) . (3.1)

In DataDroplets, data is organized into disjoint collections of tuples identified by a
string. Each tuple is a triple consisting of a unique key drawn from a partially ordered
set (K), a value that is opaque to DataDroplets (V), and a set of free-form string tags.
It is worth mentioning that the establishment of arbitrary relations among tuples can
be done even if they are from different collections.

DataDroplets use tags to allow applications to dynamically establish arbitrary re-
lations among items. The major advantage of tags is that they are free form strings;
thus, applications may use them in different manners.

Developers of applications based on traditional RDBMS are used to a system of
primary keys, foreign keys and constraints between the two. In DataDroplets the item’s
key K and the set of tags PString are used as an index for the collection, so when
defining them, the developer must consider how the data will be queried.

Moreover, the developer must consider more than querying when defining the set
of tags, because it is also used for physically partitioning the tables, which provides
load balancing and scalability. Depending on the data placement strategy, the rows
with the same set of tags can be kept together in the same node.

In a relational database, we rely on foreign keys and constraints to define rela-
tionships. This impacts how queries and updates (including inserts and deletes) from
collections are performed. In DataDroplets, foreign keys can be used as tags and the
items from different collections will be be correlated, and co-located. For example, an
application migrated from a relational database with two tables, contact and address

and a foreign key address in contact, referencing an existing address. In DataDroplets,
the items from the collection contact should add a tag with its address attribute, and
items from the collection address should also add a tag with its primary key, the ad-
dress.

Similarly, social applications may use as tags the user’s identifier and the identifiers
of the user’s social connections, allowing most operations for the same user to be

50 3 DataDroplets

restricted to a small set of nodes. Also, tags can be used to correlate messages of the
same topic.

3.2.2 Application Programming Interface (API)

put(String collection,K key, V value, PString tags)

V delete(String collection,K key,PString tags)

V get(String collection,K key)

K ⇀ V getByRange(String collection, K min, K max)

multiPut(P(String × (K ⇀ (V × PString)) mapItems)

String ⇀ (K ⇀ V) multiGet(P(String ×K) keys)

String ⇀ (K ⇀ V) getByTags(PString tags)

Figure 3.2: DataDroplets’ API

The system supports common single tuple operations, such as put, get and
delete, multi-tuple put and get operations (multiPut and multiGet), and set
operations to retrieve ranges (getByRange), and equally tagged tuples (getByTags),
Figure 3.2.

The first four operations in the API are restricted to a single collection. The put
operation determines where the replicas of the tuple of the given collection should be
placed based on the associated key and tags, and stores it. According to the key and
value types, DataDroplets encodes them as opaque array of bytes. Then, in conso-
nance with the single node data placement strategy, the item is given a position in the
circular ring identifier, and, according to it, the node responsible for serving that tuple
is found and contacted. Similar to other large scale data stores, DataDroplets does not
distinguish between inserts and updates; therefore, if a tuple from the same collection
with the same key already exists, it gets overwritten. It is worth mentioning that if the
data placement strategy takes into account the set of tags, it may imply a move of the
tuple to a new responsible node (when a tuple is updated the set of tags is modified).
In addition, the delete operation specifies the tuple’s key and collection. Optionally,
the tuple’s tags may be passed in order to ease DataDroplets locate the tuple, when
using a tag-based single node data placement strategy. The get and getByRange

operations can be, respectively, used for searching individual tuples or iterate over a
subset of tuples in a given range, defined by the key of the minor tuple, min, and the
key of the major tuple, max.

3.2 DataDroplets 51

Regarding the three remaining operations, they are multiple collection operations.
The multiGet and multiPut operations retrieve or update multiple tuples from
one or more collections in parallel. The getByTags gets all items from any collection
whose set of tags intersect with the tags in the set passed as parameter.

DataDroplets also provides operations for creating and deleting collections. As the
replication level and data placement strategies (both single node and replicas) are con-
figured on a per collection basis, collections must be explicitly created and configured
before being used.

3.2.3 Request handling

The clients route the requests through a generic load balancer that will select any node
based on load information (the contact node). With this approach, the client does not
have to link any code specific to DataDroplets in its application.

The contact node will then redirect, taking into account the data placement strategy
(both for a single node and replicas), the request to the responsible or set of responsible
nodes. For single item operations (Put, Get and Delete), the contact node sends the
proper request to the responsible node, waits for the answer, and then redirects it to the
client node, Figures 3.3(a), 3.3(b) and 3.3(c).

For multi-item operations (MultiPut, MultiGet, GetByRange, GetByTags), the con-
tact node must find the set of nodes needed to answer the request, splits the request into
multiple request, and initiates those requests in parallel at each responsible node. As
the requests return success or failure, the contact node assembles the results, and then
passes them to the client, Figures 3.3(d), 3.3(e), 3.3(f) and 3.3(g).

For metadata management operations, such as the operations for creating and delet-
ing collections, all nodes must receive the requests and process them in the same order.
Therefore, these operations cannot be forward to any node, but instead the node with
the lowest identifier receives them, and then redirects them to all other nodes, and waits
for their acknowledgements before answering to the client, Figure 3.3(h).

Some details about the request processing and the definition of the set of respon-
sible nodes are tightly dependent on the collection’s placement strategy. Therefore,
more details about the request handling are given on Section 3.2.7.

52 3 DataDroplets

Client Contact
Node

Responsible
Node

Put Operation

Put Request

Put Response

Put Response

(a) Put

Client Contact
Node

Responsible
Node

Get Operation

Get Request

Get Response

Get Response

(b) Get

Client Contact
Node

Responsible
Node

Delete Operation

Delete Request

Delete Response

Delete Response

(c) Delete

Client Contact
Node

Responsible
Node 1

MultiPut Operation

MultiPut Request

MultiPut Response

MultiPut Response

Responsible
Node k...

Calculate set of nodes

MultiPut Request

MultiPut Response

Merge results

(d) Multi Put

Client Contact
Node

Responsible
Node 1

MultiGet Operation

MultiGet Request

MultiGet Response

MultiGet Response

Responsible
Node k...

Calculate set of nodes

MultiGet Request

MultiGet Response

Merge results

(e) Multi Get

Client Contact
Node

Responsible
Node 1

GetByRange Operation

GetByRange Request

GetByRange Response

GetByRange Response

Responsible
Node k...

Calculate set of nodes

GetByRange Request

GetByRange Response

Merge results

(f) Get by range

Client Contact
Node

Responsible
Node 1

GetByTags Operation

GetByTags Request

GetByTags Response

GetByTags Response

Responsible
Node n...

GetByTags Request

GetByTags Response

Merge results

(g) Get by tags

Client First
Node Node 1

CreateCollection Operation

CreateCollection Request

CreateCollection Response

CreateCollection Response

Node N

CreateCollection Request

CreateCollection Response

...

(h) Create Collection

Figure 3.3: Request handling

3.2 DataDroplets 53

3.2.4 Overlay management

DataDroplets builds on the Chord’s structured overlay network (Stoica et al. 2001).
Physical nodes are kept organized on a logical ring overlay, where each node main-
tains complete information about the overlay membership as in Gupta et al. (Gupta
et al. 2004; Risson et al. 2006). This conforms to the assumptions about the size and
dynamics of the target environments (tens to hundreds of nodes with a reasonably sta-
ble membership), and allows efficient one-hop routing of requests (Gupta et al. 2004).

Nodes have Globally Unique Identifier (GUID) and are hashed in the ring’s virtual
overlay, with identifiers uniformly picked from the [0, 1[interval. Each node is respon-
sible for the storage of buckets of a Distributed Hash Table (DHT) also mapped into
the same interval.

On membership changes (due to nodes that join or leave the overlay), the sys-
tem adapts to its new composition updating the routing information at each node, and
readjusting the data stored at each node according to the redistribution of the map-
ping interval. In DataDroplets, this procedure follows closely the one described in
OneHop (Gupta et al. 2004).

Membership changes raise two important issues. First, local information about
the membership change must be updated, in order for each node in the system to
determine precisely which interval in the identifier space it is responsible for. The
second issue is conveying information about the change to all the nodes in the ring so
that these nodes will maintain correct information about the system membership, and
consequently manage to route in a single hop.

To maintain correct local information (that is, information about each node’s suc-
cessor and predecessor nodes), every node n runs a stabilization routine periodically,
wherein it sends keep-alive messages to its successor S and predecessor P . Then,
node P checks if N is indeed its predecessor, and if not, it notifies it of the existence
of another node between them. Similarly P checks if N is indeed its successor, and
if not it, notifies N . If either S or P does not respond, N pings it repeatedly until a
time-out period, when it decides that the node is unreachable or dead.

A joining node contacts another existing node to get its view of the current mem-
bership; this protocol is similar to the Chord protocol. The membership information
enables it to get in touch with its predecessor and successor, thus informing them of its
presence.

To maintain correct full routing tables, notifications of membership change events

54 3 DataDroplets

must reach every node in the system within a specified amount of time. This is
achieved by superimposing a well-defined hierarchy on the system. This hierarchy is
used to form dissemination trees, which are used to propagate event information (Gupta
et al. 2004).

Besides the automatic load redistribution on membership changes, because some
workloads may impair the uniform data distribution even with a random data place-
ment strategy, the system implements dynamic load-balancing as proposed in Karger
and Ruhl (Karger and Ruhl 2004).

The protocol is randomized, and relies on the move of nodes in the DHT. The
protocol receives the ε parameter that is any constant, 0 < ε < 1. The ε defines the
sensitivity of the protocol to load changes. In the following ljdenotes the load on node
j.

Each node i occasionally contacts another node j at random. If li ≤ ε × lj or
lj ≤ ε× li, then the nodes perform a load balancing operation (assume without loss of
generality that li > lj), distinguishing two cases:

• Case 1: i = j + 1: In this case, i is the successor of j and the two nodes handle
address intervals next to each other. Node j increases its identifier in the circular
ring so that the (li− lj)/2 items with lowest addresses get reassigned from node
i to node j. Both nodes end up with load (li + lj)/2.

• Case 2: i 6= j+1: If lj+1 > li, then we set i = j+1, and go to case 1. Otherwise,
node j moves between nodes i− 1, and i, to capture half of node i’s items. This
means that node j’s items are now handled by its former successor, node j + 1.

3.2.5 Bootstrapping

Some DataDroplets’ nodes play the role of seeds, entry points within the cluster. Seeds
are nodes that are discovered via an external mechanism and are known to all nodes.
Seeds can be obtained either from static configuration or from a configuration service,
such as ZooKeeper (Hunt et al. 2010). Seeds are fully functional nodes.

In the bootstrap case, when a node needs to join a cluster, it reads its configuration
file which contains a list of a few seeds, it chooses a random token for its position in
the ring and contacts a seed that will propagate the information around the cluster.

3.2 DataDroplets 55

3.2.6 Fault tolerance

In DataDroplets, the consistency is given per item. Thus, it is sufficient to have a
local view of the ring. The contact node, the one that was contacted by the client and
has issued the requests to the proper nodes, defines a timeout for each request. If the
request fails on its first attempt (when the timeout has expired) it does not return an
error to the application. Instead, requests are rerouted. If a request from contact node
n1 to responsible node n2 fails, because n2 is no longer in the system, n1 can retry the
query by sending it to n2’s successor. If the request failed, because a recently joined
node, n3, is the new successor for the key that n1 is searching for, n2 can reply with
the identity of n3 (if it knows about n3), and n1 can contact n3 in a second routing
step.

Moreover, this implies that when the node responsible for a data item receives a
request, it has to check if it is still responsible for that item, otherwise redirect it to the
new responsible node.

Membership

The one-hop DHT used in DataDroplets allows to maintain a dynamic local member-
ship with the ring’s composition. The membership service, Figure 3.4, provides meth-
ods to: get all nodes between two nodes (getRangeNodes), get all nodes in the
system (getMembers), get the node that is the successor of a given position in the
ring (getSucessor), get the n successors of a given node (getSucessors), and
get the predecessor of a given node (getPredecessor). Additionally, the mem-
bership service also notifies the following events, Figure 3.5, when: a neighbor is
added between the current node and its predecessor (neighborBeforeAdded),
the predecessor of the current node is removed (predecessorRemoved), and the
predecessor of the current node changed its position in the ring (moved).

Finger∗ getRangeNodes(Finger min,Finger max)

Finger∗ getMembers()

Finger getSuccessor(Double position)

Finger∗ getSuccessors(Finger node,int n)

Finger getPredecessor(Finger node)

Figure 3.4: Membership service’s API

56 3 DataDroplets

neighborBeforeAdded(Finger newNeighbor, Finger oldPredecessor)

predecessorRemoved(Finger oldPredecessor, Finger newPredecessor)

moved(Finger oldSucessor)

Figure 3.5: Membership notification events

Replication

Client Contact
Node

Primary
Node

Put Operation

Put Primary Request

Put Primary Response

Put Response

Backup
Node 1

Backup
Node R-1

Put Backup Request

Put Backup RequestPut Backup Response

Put Backup Response

(a) None

Client Contact
Node

Primary
Node

Put Operation

Put Primary Request

Put Primary Response

Put Response

Backup
Node 1

Backup
Node R-1

Put Backup Request

Put Backup RequestPut Backup Response

Put Backup Response

(b) First

Client Contact
Node

Primary
Node

Put Operation

Put Primary Request

Put Primary Response
Put Response

Backup
Node 1

Backup
Node R-1

Put Backup Request

Put Backup RequestPut Backup Response

Put Backup Response

(c) All

Figure 3.6: Replication

In the Clouder architecture, replication is optional on the soft-state layer as data is

3.2 DataDroplets 57

stored persistently and in a dependable manner at the persistent-state layer. However,
in DataDroplets, in order to ensure the resilience of each node’s metadata, and to help
load-balancing read operations, it also replicates its data.

We adopt a simple configurable primary-backup replication protocol that can work
from asynchronous mode to synchronous mode (Guerraoui and Schiper 1997). As our
goal is to offer stronger consistency, the default mode is synchronous. With R repli-
cas, the primary of the item is the one determined by the single node data placement
strategy, and the R− 1 backup’s nodes are defined according to the replica placement
strategy.

When receiving an update request, the contact node sends a request marked as
master to the primary node responsible for that item. Then, the primary processes the
client’s request and forwards the results via state transfer to the other replicas — the
backups. Updates can be propagated either in a synchronous, asynchronous, or semi-
synchronous manner to the backup replicas. In the first variant 3.6(c), replicas are
always kept consistent; thus, read operations can be safely performed at any replica. In
the second variant 3.6(a), read operations on backup copies might return stale values.
In the latter variant 3.6(a), the master responds to the contact node as soon as it receives
the acknowledgment from one of the slaves. Read operations on backup copies might
also return stale values.

The system is designed so that every node in the system can determine which nodes
are the replicas of any particular tuple. It is worth mentioning that in DataDroplets data
is partitioned in several partitions (according to the number of nodes, N), and the pri-
mary and, consequently, its backups are chosen on a per partition level. Thus, each
partition has a different master node and backup replicas. Therefore, opposite to tradi-
tional primary-backup replication schemes, if the primary replica becomes overloaded,
more nodes can be added to the system; therefore, new partitions will appear to have a
different primary replica.

While a crash of a backup replica does not require specific actions by the repli-
cation protocol, a crash of the primary replica requires reconfiguration since a new
primary needs to be promoted. In DataDroplets, the new primary node will be the
successor of the previous primary node.

By having backups of the primary’s copies of data, the replication schema, primar-
ily target at fault tolerance, can also help on load-balancing read operations. While
write operations are only sent to the primary replica, and then applied in the backup,

58 3 DataDroplets

read operations can be sent to any available replica. For single item read operations,
one replica is chosen randomly to ensure load-balancing of requests, and for multi-item
operations, we send the request to the minimal set of nodes that are needed to answer.
For example, in the given scenario, Figure 3.7, eight nodes in the system and a query
whose keys are in the ring interval [0.1,0.9], the set of nodes that have the needed data
is [N2,N3,N4,N5,N5,N7,N8], but if there are three replicas for each item in the system
and the two backup nodes are chosen using a successor-list replica placement strategy,
then it is sufficient to send the query to the set of nodes [N2,N5,N8].

N1

N4

N2N8

N6

N3N7

All nodes

Query: [0.1,0.9]

0.0

0.1

0.2

0.40.6

0.7

0.9

R=3

]0.9,0.0]

]0.0,0.1]

]0.1,0.2]

]0.2,0.4]]0.5,0.6]

]0.6,0.7]

]0.7,0.9] N1

N4

N2N8

N6

N3N7

Minimal nodes

0.0

0.1

0.2

0.40.6

0.7

0.9

]0.9,0.0]

]0.0,0.1]

]0.1,0.2]

]0.2,0.4]]0.5,0.6]

]0.6,0.7]

]0.7,0.9]

N5

0.5

]0.4,0.5]

N5

0.5

]0.4,0.5]

Figure 3.7: Multi-item query

State transfer

In case of failure of a node or a join of a new node, fail-over is done automatic and the
state transfer process is started. The state transfer process is triggered in node N when
it detects it has a new predecessor or when it detects its old predecessor has failed. The
operations that node N performs when any of these situations happens are described
in detail below. When the node N detects changes in its predecessor, it:

1. Splits all nodeN ’s primary data into backup data, the one between the old prede-
cessor’s position and the new predecessor’s position, and the new primary data,
the one between the new predecessor’s position and this node’s position.

2. Sends all the data from whose the node is a backup to the new predecessor.

3.2 DataDroplets 59

3. Discards data from the most distant backups, backup R.

4. Sends the ShiftRightMessage to all backup nodes, whose primary node
was N .

Each node S that receives the ShiftRightMessage splits the backup data from
node N , as if it was being split in two partitions, and if S is the most distant backup of
node N , it discards backup data for the new node.

N1N4

N2

1

2

3
4

5

6

7
0

N3

(a) Before

N1N4

N2

1

2

3
4

5

6

7
0

N3

N5

(b) After

Figure 3.8: Data transfer example

Consider the following example of a ring with four nodes, and where each partition
is replicated in two backup nodes, Figure 3.8(a). Each node stores three partitions of
data. The first is the partition from which it is the primary, and in the Figure it is shown
right at the top of the node. The other two partitions are the ones from which the node
is a backup replica. In the Figure, at the top of the primary partition is the backup data
from the node nearby, its predecessor. The last partition is the one from the node at a
distance of two nodes, predecessor(predecessor).

When node N5 joins the system, the membership service will notify node N1 that
it has a new predecessor; thus, it shall split its data in half (dark blue) with the new node
(orange). The partition of data at the end of the transfer is depicted in Figure 3.8(b).
Briefly, the changes are:

60 3 DataDroplets

• Node N2 discards the backup data from node N4 (gray), and splits the old
backup data from node N1 (dark blue) in two backup data partitions (light blue
and orange).

• Node N1 discards backup data from node N3, and splits its old primary data
(dark blue) into new primary data (light blue) and backup data from the primary
data of the new node N5 (orange).

• Node N5 receives from node N1 all of its backups and primary data, where its
primary data (orange) is a subset of the old primary data from node N1 (dark
blue).

3.2.7 Data placement

DataDroplets supports several data placement strategies: random, ordered and a novel
tagged strategy. The data placement strategy is defined on a collection basis.

The random placement is the basic load-balancing strategy present in most DHTs
(Stoica et al. 2001; Gupta et al. 2004) and also in most large scale data stores (DeCan-
dia et al. 2007; Cooper et al. 2008; Lakshman and Malik 2010). The ordered placement

takes into account order relationships among items’ primary key favoring the response
to range oriented reads, and is present in some large scale stores (Cooper et al. 2008;
Chang et al. 2006; Lakshman and Malik 2010). This order needs to be disclosed by
the application and can be per application, per workload or even per request. We use
an order-preserving hash function (Garg and Gotlieb 1986) to generate the identifiers.
Compared to a standard hash function for a given ordering relation among the items,
an order-preserving hash function hashorder() has the extra guarantee that if o1 < o2,
then hashorder(o1) < hashorder(o2).

The major drawback of the random placement is that items which are commonly
accessed by the same operation may be distributed across multiple nodes. A single op-
eration may need to retrieve items from many different nodes leading to a performance
penalty.

Regarding the ordered placement, in order to make the order-preserving hash func-
tion uniform as well, we need some knowledge on the distribution of the item’s keys (Garg
and Gotlieb 1986). For a uniform and efficient distribution we need to know the do-
main of the item’s key, the minimum and maximum values. This yields a trade-off
between uniformity and reconfiguration. While a pessimistic prediction of the domain

3.2 DataDroplets 61

will avoid further reconfiguration, it may break the uniformity. In the current imple-
mentation of DataDroplets, the hash function is not made uniform, but, as described in
Section 3.2.4, we use a more general approach to balance load.

A key aspect of DataDroplets is the multi-item access that enables the efficient
storage and retrieval of large sets of related data at once. Multi-item operations lever-
age disclosed data relations to manipulate sets of comparable or arbitrarily related
elements. The performance of multi-item operations depends heavily on the way cor-
related data is physically distributed.

The balanced placement of data is particularly challenging in the presence of dy-
namic and multi-dimensional relations. This aspect is the main contribution of the
next section, describing a novel data placement strategy based on multidimensional
locality-preserving mappings. Correlation is derived from disclosed tags dynamically
attached to items.

Tagged placement

The placement strategy, called hereafter tagged, implements the data distribution ac-
cording to the set of tags defined per item. A relevant aspect of our approach is that
these sets can be dynamic. This allows us to efficiently retrieve correlated items that
were previously attached by the application. The strategy uses a dimension reducing
and locality-preserving indexing scheme that effectively maps the multidimensional
information space to the identifier space, [0, 1[.

Tags are free-form strings and form a multidimensional space where tags are the
coordinates and the data items are points in the space. Two data items are co-located
if they have equal-sized set of tags and tags lexicographically close, or if one set is a
sub-set of the other.

This mapping is derived from a locality-preserving mapping called Space Filling
Curves (SFCs) (Sagan 1994). A SFC is a continuous mapping from a d-dimensional
space to a unidimensional space (f : Nd → N). The d-dimensional space is viewed
as a d-dimensional cube partitioned into sub-cubes, which is mapped onto a line such
that the line passes through each point (sub-cube) in the volume of the cube once,
entering and exiting the cube only once. Using this mapping, a point in the cube can
be described by its spatial coordinates or by the length along the line, measured from
one of its ends.

SFCs are used to generate the one-dimensional index space from the multidimen-

62 3 DataDroplets

0 n

p
a

b
(a) Hilbert Mapping

0 n

a

(b) Query example

p

(c) Hybrid-n placement strategy

Figure 3.9: Tagged placement strategy

sional tag space. Applying the Hilbert mapping (Butz 1971) to this multidimensional
space, each data element can be mapped to a point on the SFC. Figure 3.9(a) shows
the mapping for the set of tags {a, b}. Any range query or query composed of tags can
be mapped into a set of regions in the tag space, and corresponding to line segments in
the resulting one-dimensional Hilbert curve. These line segments are then mapped to
the proper nodes. An example for querying tag {a} is shown in Figure 3.9(b), which
is mapped into two line segments.

If an update is made to a previous item without knowing its previous tags, it must

3.2 DataDroplets 63

find which node has the requested item and then update it. If the update also updates
its tags, the item will be moved from the old node, defined by old tags, to the new
node, defined by new tags.

As this strategy only takes into account tags, all items with the same set of tags will
have the same position in the identifier space; therefore, will be allocated to the same
node. To prevent this, we adopt a hybrid-n strategy. Basically, we divide the set of
nodes into n partitions, and the item’s tags, instead of defining the complete identifier
into the identifier space, define only the partition, as shown in Figure 3.9(c). The
position inside the partition is defined by a random strategy. The random strategy was
chosen in order to have uniform distribution of nodes within the partition. Therefore,
the locality is only preserved inter partition.

Request handling

Most of request processing is tightly dependent on the collection’s placement strategy.
For the put and multiPut this is obvious as the target nodes result from the chosen
placement strategy.

For operations that explicitly identify the item by key, get, multiGet and delete,
the node responsible for the data can be directly identified when the collection is dis-
tributed at random or ordered. Having the data distributed by tags, all nodes need to
be searched for the requested key.

For getByRange and getByTags requests, the right set of nodes can be di-
rectly identified if the collection is distributed with the ordered and tagged strategies,
respectively. Otherwise, all nodes need to be contacted and need to process the request.

3.2.8 Replica placement strategy

Further to the novel tagged placement strategy, DataDroplets also supports traditional
random and ordered data placement strategies. Each strategy is biased to some kind
of operation and none is better for all kind of operations. Briefly, the random strategy
is the best for workloads where single random tuple operation, get, dominate; the
ordered strategy is the best for workloads where set operations to retrieve ranges,
getByRange, dominate; and the novel tagged strategy is the best for workloads
where set operations for equally tagged items, getByTags, dominate. Therefore,
they are not suited for a multi-tenant environment, where workloads with different

64 3 DataDroplets

dominating operations may coexist.

As DataDroplets replicates data, it must also have a replica placement strategy.
Thus, we have defined a new strategy that combines a multi-hashing strategy with
successor-list replication. The application defines, on a per collection basis, a list of
single node placement strategies with the size being the desired number of replicas, R.
If the same strategy is used on more than one replica, the node for the replica with the
lowest position in the list is chosen using the defined single node strategy, and other
replicas using the same strategy are defined from the successor’s list in the order de-
fined in the list. For example, the list [random, ordered, tagged, tagged], defines that
items of that collection will have four replicas. The first replica of an item with key
K, will be defined using the random placement strategy as successor(random(k)), the
second replica will be defined using the ordered strategy as successor(ordered(k)), the
third replica will be defined using the tagged strategy successor(tagged(k)), and the
last replica will be defined as the successor node of the first tagged replica, succes-

sor(successor(tagged(k))).

When processing a request, DataDroplets automatically chooses from the available
placement strategy for that collection the most adequate one, trying to minimize the
number of requests.

3.3 Prototype

The DataDroplets prototype has been implemented in Java using the ProtoPeer toolkit
(Galuba et al. 2008) with about 15k lines of code. ProtoPeer is a rapid distributed
systems prototyping toolkit that allows switching between event-driven simulation and
live network deployment without changing the application code.

The key architectural features which enable this are the abstract time and network-
ing APIs. The APIs allow only a small number of basic operations: creation of timers
for execution scheduling, and creation of network interfaces for sending and receiving
messages.

ProtoPeer is event-driven, and the system is composed of a set of peers that com-
municate with one another by passing messages. Each application defines its set of
messages and message handlers. Also, an application typically defines a set of timers
and handlers for the timer expiration events. Most of the application logic is called
from within the timer and message handlers.

3.3 Prototype 65

A peer in a distributed system typically implements more than one piece of mes-
sage passing functionality. In ProtoPeer the message passing logic and state of each of
the protocols is encapsulated in components called peerlets. Peers are constructed by
putting several peerlets together. The peerlets can also be removed or added at runtime.
The peerlets, just as the applets or servlets, have the familiar init-start-stop lifecycle.
The peer provides the execution context for all of the peerlet instances it contains. The
peerlets can discover one another within that context, and use one another’s function-
ality. Peerlets can export well defined interfaces, for example, a DHT interface, which
can have several implementations that can be easily swapped.

Regarding the event-driven simulation from ProtoPeer, we have used the network
simulation model and extended it with simulation models for CPU as in Xiongpai et
al. (Xiongpai et al. 2009). For the CPU simulation we have used a hybrid simulation
approach as described in Sousa et al. (Sousa et al. 2005). Briefly, the execution of an
event is timed with a profiling timer, and the result is used to mark the simulated CPU
busy during the corresponding period thus, preventing other events to be attributed
simultaneously to the same CPU. A simulation event is then scheduled with the exe-
cution delay to free the CPU. Further pending events are then considered. Therefore,
only the network latency is simulated, and the other execution times are profiled from
real execution.

For the live network deployment, ProtoPeer uses a non-blocking I/O library, Apache
MINA1. We have used Apache Mina 1.1.3.

For the prototype of DataDroplets, we implemented two peerlets: SimpleOneHop
and DataDroplets. The former is the implementation of OneHop DHTl (Gupta et al.
2004) used in DataDroplets, and the latter is the DataDroplet’s prototype.

3.3.1 SimpleOneHop

This peerlet implements the OneHop protocol for maintaining the set of peer neigh-
bors. On start() this peerlet waits for the list of bootstrap peers from the
BootstrapClient and sends one ConnectRequest to each of the bootstrap
peers. When it receives a ConnectRequest, the peerlet adds the sender to the
neighbor set and responds back to the sender with a ConnectResponse. When this
peerlet receives a ConnectResponse, it adds the sender to the neighbor set.

1http://mina.apache.org/

http://mina.apache.org/

66 3 DataDroplets

The peerlet uses a CircularDoubleLinkedList data structure to store the local view
membership. The prototype uses the ProtoPeer Timer to run the stabilization routine
periodically and to detect the time-out.

The peerlet depends on existing peerlets from the ProtoPeer framework, the
BootstrapClient and NeighborManager peerlets. The NeighborManager is
a peerlet that manages the set of neighbors of the peer. Neighbors can be added or
removed, iterated over or retrieved either by their peer ID or their network address.
The BootstrapClient is a peerlet that on init(), uses the idGenerator supplied
in the constructor to initialize the peer’s identifier. Then, on start(), it contacts
the BootstrapServer and gets the initial set of neighbors. After that, it calls
bootstrapCompleted on all of its listeners and becomes idle.

3.3.2 DataDroplets

This is the peerlet that implements DataDroplets. It receives operations from clients
and then: discovers to which nodes the request must be sent, sends the requests to the
proper nodes, waits for all responses, and notifies the client of the result. There is a
single instance of this peerlet per node.

For each client an instance of a ClientWorker is created. When the
DataDroplets peerlet receives a request, it finds the proper ClientWorkerwhich
will handle it. The ClientWorker, depending on the type of the operation: discov-
ers to which nodes the request must be sent, sends the requests to the proper nodes,
waits for all responses, and notifies the client of the result.

Data Placement

KeyGenerator is the interface to any single node data placement strategy, Fig-
ure 3.10. The ItemBasedKeyGenerator is the interface to all data placement
strategies, taking into account the key of the item. The generator calculates the item’s
ring position only based on the item itself. The
double generateKey(Object key) calculates the item position in the ring
within the interval [0, 1[based on the item’s key. The
OrderPreservingKeyGenerator is the interface to an item-based single node
data placement strategy that also preserves order. TagBasedKeyGenerator is the
interface to single node data placement strategies, based on the item’s tags. The gen-

3.3 Prototype 67

Figure 3.10: Class diagram for single node data placement strategies

erator calculates the item’s ring position only based on the defined tags. Tags allow to
establish relations between items. The method
double generateKey (Set<String> tags) calculates the item’s position
in the ring within the interval [0, 1[based on the given set of tags. HybridKeyGenerator
is the interface to hybrid-based key generators that combine an item-based generator
with a tag-based generator. The generator has the
public double generateKey(Object key, Set<String> tags)method,
and calculates the item’s ring position based on both the item’s key and tags.

RandomKeyGeneratorImpl is an implementation of an item-based key gen-
erator using a random hash function. It supports several hashing mechanisms, such as
Java default hash code, CRC (Cyclic Redundancy Check) with 32 bits, FNV (Fowler–Noll–Vo)
with both 32 and 64 bits2, and KETAMA (uses MD5)3. By default it uses the KE-
TAMA implementation, as from the tests conducted, it presents the most uniform dis-
tribution.

OrderPreservingKeyGeneratorImpl is the implementation of an item-
and order-based key generator. It receives the minimum and maximum expected values
for the domain, and distributes them in the interval [0,1[, using an order preserving
hash function.

HilbertSFCKeyGenerator is the implementation of the novel single node
data placement strategy described in Section 3.2.7. It implements the

2http://tools.ietf.org/html/draft-eastlake-fnv-03
3http://www.audioscrobbler.net/development/ketama/

http://tools.ietf.org/html/draft-eastlake-fnv-03
http://www.audioscrobbler.net/development/ketama/

68 3 DataDroplets

Figure 3.11: Class diagram for replica placement strategies

TagBasedKeyGenerator interface, and uses a Hilbert Space Filling Curve. For
the implementation of Space Filling Curves, we have used the Uzaygezen library4 that
is a Multi-Dimensional Indexing with Space Filling Curves, with some modifications
and optimizations.

TagBasedHybridBitsGenerator is the implementation of a hybrid-n strat-
egy that divides the set of nodes into n partitions, and the item’s tags define only the
partition instead of defining the complete identifier into the identifier space, as previ-
ously shown in Figure 3.9(c). As the result of the hash function is an array of bytes,
the implementation uses the most significant nBitsF irst from the tag-based key gen-
erator, and the other bits from an item-based key generator.

ReplicaPlacement, is the abstract class which offers several methods for all
replica placement strategies, Figure 3.11. The main methods are:

• abstract F inger getF ingerAtPos(int replica, double ringPosition):
Returns the node that is the nth replica of the item whose ring identifier is
ringPosition.

• abstract F inger getReplica(int replica, F inger finger): Returns the
node that is the nth backup replica of the primary node finger.

4http://code.google.com/p/uzaygezen/

http://code.google.com/p/uzaygezen/

3.3 Prototype 69

Figure 3.12: Class diagram for data store classes

• List < Finger > getReplicas(Comparable key, Set < String > tags):
Returns all the replicas of the item with the given key and set of tags.

• List < Finger > getBackupReplicas: Returns all the backup replicas of
the item with the given key and set of tags.

SuccessorListReplicaPlacement is a concrete implementation of a replica
placement strategy that uses the successor-based replica placement strategy.
MultiHashingReplicaPlacement is a concrete implementation of a replica
placement strategy that uses the successor-based replica placement strategy when mul-
tiple replicas of the same type exist.
MultiPlacementReplicaPlacement is a concrete implementation of the novel
replica placement strategy that combines a multi-hashing strategy with successor-list
replication, as described in Section 3.2.8.

Data Store

DataStore, is the interface to a data store that handles the storage of data in DataDroplets,
Figure 3.12. It allows to create table stores and manipulate existing ones, for new
collections. TableStore is the interface to a table store. All the methods are asyn-

70 3 DataDroplets

chronous; therefore, they receive a callBack to notify using handleFinishedOperation
when the operation has finished and the result is available. The main methods are:

• put(TableStoreOperationsListener listener, Comparable key,Object data,

Set < String > tags: Sets the value associated with the given key to the
given data and tags.

• get(TableStoreOperationsListener listener, Comparable key): Gets the
value associated with the given key or null if there is no value associated with
the key.

• multiGet(TableStoreOperationsListener listener, Set < Comparable >

keys): Gets the values associated with the given keys or null if there is no value
associated with the key.

• getByTag(TableStoreOperationsListener listener, Set < String > tags):
Gets all the values matching the given tags.

• delete(TableStoreOperationsListener listener, Comparable key): If an
item exists with the given key, deletes it.

• getRange(TableStoreOperationsListener listener, Comparable minKey,

Comparable maxKey): Retrieves the subset of tuples in a given range de-
fined by the key of the minor tuple, minKey, and the key of the major tuple,
maxKey.

While the soft-state layer of Clouder, DataDroplets, was not designed to persist
data, the current prototype of DataDroplets supports both in-memory storage and a
persistent storage, as the persistent-state layer of Clouder is not available.

SortedMapTableStoreImpl is an implementation of a table store that stores
all data in-memory, using a Red-Black tree, Java TreeMap.
PersistentStorageCollectionStoreImpl is an implementation of a table
store that stores all data locally in a persistent manner using Berkeley DB Java edition
4.0 5.

5http://www.oracle.com/technetwork/database/berkeleydb/overview/
index-093405.html

http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html
http://www.oracle.com/technetwork/database/berkeleydb/overview/index-093405.html

3.3 Prototype 71

Messages

The main messages used by DataDroplets are depicted into Figure 3.13.

(a
)

R
eq

ue
st

s

(b
)

R
es

po
ns

es

Figure 3.13: DataDroplets’ messages

The CreateTableRequest and CreateTableResponse are used to create
a new collection request. The request is first sent from the contact node to one of the

72 3 DataDroplets

nodes, and then to all other nodes. The response is sent from all other nodes to the first
node and then it replies to the client with the result. The creation is only successful if
it succeeds at all other nodes. The request has the collectionName as a String and
the set of configurations associated to it, given by
List<CollectionMetaData> metaData, one per replica. The response has
the collectionName as a String and the result as a boolean.

The DataDropletsRequest and the DataDropletsResponse are the par-
ent class for all DataDroplets’ request and response messages, respectively. Similarly,
the DataDropletsSingleItemRequest and the
DataDropletsSingleItemResponse are respectively the parent class of all
DataDroplets’ single item request messages, and have two attributes: the item’s key as
a Comparable, and the item’s collectionName as String.

The LoadInfoMessage is used during the load balancer process and has the
load of a given number (the number of data items it holds) and the node’s identi-
fier. The ShiftRightMessage and the MoveDataBetweenPeersMessage

are used during the state transfer process, either triggered by the join/failure of a node
or by the load balancer process. The ShiftRightMessage has info about how
many shifts the node has to perform, given by the distance of the target backup from
the primary replica, and the definition of the partition of the new node, given by the
ring interval (min and max). MoveDataBetweenPeersMessage message is sent
from a primary replica, splitting half of its data, and has information about: the node’s
new position, all collection’s metadata, all collection’s data as
Map<String,Map<Integer,Map<Comparable,Object>>> and all collec-
tion’s tags as
Map<String,Map<Integer,Map<Comparable,Set<String>>>>.

Finally, the ProxyCDHTRequest is used to redirect a DataDropletsRequest
to another node, when nodes fail.

3.4 Evaluation

In this section we evaluate our implementation of DataDroplets and its data placement
strategies. For this, we ran a series of experiments to evaluate the performance of
DataDroplets, under a workload representative of applications currently exploiting the
scalability of emerging data stores.

3.4 Evaluation 73

As there is neither an available version of most of considered data stores nor
enough available machines to run them, in the following, we present performance re-
sults for DataDroplets in a simulated setting. We evaluate the enhanced data model and
the cost additional consistency guarantees, and its scalability by substantially increas-
ing the number of nodes. Moreover, we also evaluated the suitability of the different
data placement strategies in both simulated and real settings.

3.4.1 Test workloads

In this section we give some details about the benchmark’s framework implemented in
ProtoPeer, and the detailed description of a novel benchmark mimicking the usage of
the Twitter social network.

Benchmark’s Framework

The BenchMark is an abstract class that defines the shared state to all benchmark
implementations. It has a StatsCollector instance and a list of registered listen-
ers for benchmark events. The main methods are:

• boolean hasMoreInitOperations(): returns true if the benchmark
has more initialization operations.

• DataDropletsOperation nextInitOperation(): returns the next
initialization operation corresponds to a DataDroplets operation.

• BenchMarkClient createNewClient(Clock clock): creates a new
client for the given benchmark.

BenchMarkClient is an interface with the following methods:

• boolean hasMoreOperations(): returns true if the client has more op-
erations.

• Pair<DataDropletsOperation,Double> nextOperation(): re-
turns a pair, being the left side the next operation and the right side the think
time between the previous operation and this one.

• int getClientID(): returns the client’s unique identifier.

74 3 DataDroplets

StatsCollector is used to store and present statistics for a given benchmark.
The main methods are:

• registerRequest(double startTime,int opID,int nodeID,

double latency,boolean write,String requestType): regis-
ters a new operation with the given parameters. The requestType defines the
type of operation.

• int getTotalRequests(String requestType): returns the total num-
ber of operations of a given type. If the requestType is null, returns the total for
all types of operations.

• double getRequestsMean(String requestType): returns the mean
of latency of operations of a given type. If the requestType is null, returns the
mean for all types of operations.

• set/getFinishTime(Time finishTime): setter and getter for the fin-
ish time of the benchmark.

• set/getStartTime(Time startTime): setter and getter for the start
time of the benchmark.

BenchMarkInit is a peerlet that waits until the initial ring is complete, and then
starts executing benchmark’s initialization operations on DataDroplets. When all
initialization operations have finished, it sends a BenchInitFinish message to all nodes.

The BenchMarkClientExecutor is a peerlet which executes the specified
number of clients for each DataDroplets’ node, given byMap < NetworkAddress, Integer >.
The peerlet waits until it receives the BenchInitFinish, and then starts executing client
operations on each of the specified DataDroplets’ nodes. It finishes when all the client
operations finished. The BenchMarkExecutor uses a fixed thread pool to run the
benchmarks in live experiments.

MicroBenchmark is a simple benchmark with a single client that runs a pre-
determined number of operations for each type of DataDroplets’ operation (Put, Get,
GetByRange, GetByTags, Delete), and validates its results.

Twitter workload

As there is no available benchmark for large scale data stores that mimics general
purpose multi-item operations, a workload that mimics the usage of the Twitter social

3.4 Evaluation 75

network was defined.
Twitter is an on-line social network application which offers a simple micro-blogging

service, consisting of small user posts, the tweets. A user gets access to other user
tweets by explicitly stating a follow relationship.

The central feature of Twitter is the user timeline. A user’s timeline is the stream of
tweets from the users onefollows and from one’s own. Tweets are free form strings up
to a hundred and forty characters. Tweets may contain two kinds of tags, user mentions
formed by a user’s ID preceded by @ (for example, @john), and hashtags, arbitrary
words preceded by # (for example, #topic), meant to be the target of searches for
related tweets.

Our workload definition has been shaped by the results of recent studies on Twit-
ter (Java et al. 2007; Krishnamurthy et al. 2008; Boyd et al. 2010). In particular, we
consider just the subset of the seven most used operations from the Twitter’s API (Twit-
ter 2010) (Search and REST API as of March 2010):

List<Tweet>statuses user timeline(String userID, int s, int c) retrieves
from userID’s tweets, in reverse chronological order, up to c tweets starting from s (read-only
operation).

List<Tweet>statuses friends timeline(String userID, int s, int c) retrieves
from userID’s timeline, in reverse chronological order, up to c tweets starting from s. This oper-
ation allows to obtain the user’s timeline incrementally (read-only operation).

List<Tweet>statuses mentions(String userID) retrieves the most recent tweets men-
tioning userID’s, in reverse chronological order (read only operation).

List<Tweet>search contains hashtag(String topic) searches the system for tweets
containing topic as hashtag (read-only operation).

statuses update(Tweet tweet) appends a new tweet to the system (update operation).

friendships create(String userID, String toStartUserID) allows userID to fol-
low toStartUserID (update operation).

friendships destroy(String userID, String toStopUserID) allows userID to un-
follow toStopUserID (update operation).

For the implementation of the test workload we consider a simple data model of
three collections: users, tweets and timelines. The users collection is keyed
by userID, and for each user it stores profile data (name, password, and date of cre-
ation), the list of the user’s followers, a list of users the user follows, and the user’s

76 3 DataDroplets

tweetID, an increasing sequence number. The tweets collection is keyed by a com-
pound of userID and tweetID. It stores the tweets’ text and date, and associated user
and topic tags if present. The timelines collection stores the timeline for each user.
It is keyed by userId, and each entry contains a list of pairs (tweetID, date) in reverse
chronological order.

In a nutshell, the operations listed above manipulate these data structures, as fol-
lows. The statuses_update operation reads and updates the user’s current tweet
sequence number from users, appends the new tweet to tweets, and updates the
timeline for the user and each of the user’s followers in timelines. The
friendships_create and friendships_destroy operations update the in-
volved users’ records in users, and recomputes the followers’ timelines adding
or removing the most recent tweets from the followed, or unfollowed, user. Regard-
ing the read-only operations, statuses_friends_timeline simply accesses
the specified user timeline record in timelines, statuses_user_timeline
accesses a range of the user’s tweets, and statuses_mentions and
search_contains_hashtag the tweets collection in general.

Twitter’s network belongs to a class of scale-free networks, and exhibit a small
world phenomenon (Java et al. 2007). As such, the set of users and their follow re-
lationships are determined by a directed graph, created with the help of a scale-free
graph generator (Barabási and Bonabeau 2003).

Workload is firstly initialized with a set of users (that remains unchanged through-
out the experiments), a graph of follow relationships (that is updated during the work-
load run due to the friendships_create and friendships_destroy op-
erations) and a set of tweets. The initial population of tweets is needed in order
to fulfill statuses_user_timeline, statuses_friends_timeline and
statuses_mentions requests right from the start of the experiments. The gener-
ation of tweets, both for the initialization phase and for the workload, follows a couple
of observations over Twitter traces (Krishnamurthy et al. 2008; Boyd et al. 2010). First,
the number of tweets per user is proportional to the user’s followers (Krishnamurthy
et al. 2008). From all tweets, 36% mention some user and 5% refer to a topic (Boyd
et al. 2010). Mentions in tweets are created by randomly choosing a user from the set
of friends. Topics are chosen using a power-law distribution (Java et al. 2007).

Each run of the workload consists of a specified number of operations. The next
operation is randomly chosen, taking into account the probabilities of occurrence de-

3.4 Evaluation 77

Table 3.1: Probability of Operations
Operation Probability

search contains hashtag 15%
statuses mentions 25%

statuses user timeline 5%
statuses friends timeline 45%

statuses update 5%
friendships create 2.5%

friendships destroy 2.5%

picted in Table 3.1. To our knowledge, no statistics about the particular occurrences of
each of the Twitter operations are publicly available. The figures of Table 3.1 are bi-
ased toward a read intensive workload, and based on discussions that took place during
Twitter’s Chirp conference 2010.6

The defined workload may be used with both large scale data stores and traditional
relational databases.7

3.4.2 Experimental setting

For all experiments presented next, the performance metric has been the average re-
quest latency as perceived by the clients. The system was populated with sixty-four
topics for tweets and an initial tweet factor of a thousand. An initial tweet factor of
n means that a user with f followers will have n × f initial tweets. For each run,
five-hundred thousand operations were executed. Different request loads have been
achieved by varying the clients think time between operations. Throughout the exper-
iments no failures were injected.

Simulated setting

The network model of ProtoPeer was configured to simulate a LAN with latency uni-
formly distributed between 1 ms and 2 ms. Regarding CPU, each node was configured
and calibrated to simulate one dual-core AMD Opteron processor running at 2.53GHz.
All data has been stored in memory, persistent storage was not considered.

6The Twitter official developers conference, http://pt.justin.tv/twitterchirp/b/
262219316.

7The workload is available at https://github.com/rmpvilaca/UBlog-Benchmark.

http://pt.justin.tv/twitterchirp/b/262219316
http://pt.justin.tv/twitterchirp/b/262219316
https://github.com/rmpvilaca/UBlog-Benchmark

78 3 DataDroplets

The DataDropletsSimulatedExperiment allows to start the simulation
of the system with DataDroplets’s N nodes, and running the given benchmark. The
parameters are: a file path to store statistics; number of DataDroplets nodes; the load
balancing interval: the ε parameter for load balancing; whether or not the optimization
of minimizing replicas is to be used; the primary backup replication strategy (syn-
chronous, asynchronous, or semi-asynchronous); the benchmark to be executed and
its parameters. For the Twitter benchmark the parameters are: number of populated
users; number of concurrent clients; total number of operations; think time between
consecutive operations.

For each node, the experiment adds the following peerlets: NeighborManager,
SimpleOneHop, BootstrapClient, and DataDroplets. Additionally, one of the nodes
add the following peerlets: BootstrapServer, BenchMarkInit, and BenchMarkClien-
tExecutor.

In detail, the initialization of the peerlets is as follows:

Pee r newPeer = new Pee r (p e e r I n d e x) ;
i f (p e e r I n d e x == 0) {

newPeer . a d d P e e r l e t (new B o o t s t r a p S e r v e r ()) ;
}
newPeer . a d d P e e r l e t (new NeighborManager ()) ;
newPeer . a d d P e e r l e t (new SimpleOneHop (nPeers 1)) ;
newPeer . a d d P e e r l e t (new B o o t s t r a p C l i e n t (Expe r imen t . g e t S i n g l e t o n () . ge tAddressToBindTo (0) ,
new S i m p l e P e e r I d e n t i f i e r G e n e r a t o r ())) ;
newPeer . a d d P e e r l e t (new D a t a D r o p l e t s (p e r s i s t e n t , m i n i m i z e R e p l i c a s , r e p l i c a t i o n S t r a t e g y ,

c a c h e S i z e , true , l o a d B a l a n c i n g I n t e r v a l , d e l t a L o a d B a l a n c i n g)) ;
i f (p e e r I n d e x == 0) {

newPeer . a d d P e e r l e t (new BenchMarkIn i t (benchmark)) ;
newPeer . a d d P e e r l e t (new B e n c h M a r k C l i e n t E x e c u t o r (benchmark)) ;

}

The Twitter workload has been populated with ten-thousand concurrent users, and
the same number of concurrent users were simulated (uniformly distributed by the
number of configured nodes).

Real setting

We used a machine with 24 AMD Opteron Processor cores running at 2.1GHz, 128GB
of RAM and a dedicated SATA hard disk. We ran twenty instances of Java Virtual
Machine (1.6.0) running ProtoPeer, and all data has been stored persistently using
the PersistentStorageCollectionStoreImpl implementation that stores
all data locally using Berkeley DB.

3.4 Evaluation 79

We have used two live experiments: DataDropletsLiveExperiment to run
DataDroplets’ nodes, and BenchmarkLiveExperiment to run Benchmark nodes.
The BenchmarkLiveExperiment allows to start a live execution of a given bench-
mark with the given parameters: a file path to store statistics; number of replicas and
their placement strategy for the benchmark’s collections; list of DataDroplets nodes
node1IP:node1Port,node2IP:node2Port ...; the benchmark to be executed and its pa-
rameters. For the Twitter benchmark the parameters are: number of populated users;
number of concurrent clients; total number of operations; think time between consec-
utive operations. DataDropletsLiveExperiment allows to start a live peer of
DataDroplets with the given parameters: initial peers; the size of the cache used in the
data store; the load balancing interval; the ε parameter for load balancing; whether or
not the optimization of minimizing replicas is to be used; the primary backup replica-
tion strategy (synchronous, asynchronous, or semi-asynchronous).

The workload has been populated with two-thousand and five-hundred concurrent
users and the same number of concurrent users were run (uniformly distributed by the
number of configured instances). During all the experiments IO was not the bottleneck.

3.4.3 Results

Evaluation of DataDroplets

Figure 3.14(a) depicts the response time for the combined workload. Overall, the
use of tags in DataDroplets to establish arbitrary relations among tuples consistently
outperforms the system without tags with responses 40% faster.

When using tags, DataDroplets may use the data partition strategy that takes into
account tuple correlations; therefore, it stores correlated tuples together. As the work-
load is composed of several operations that access correlated tuples, the access latency
when using tags is lower than without tags, as other data partition strategies, which
only take into account a single tuple, may be used.

Evaluation of node replication

Data replication in DataDroplets is meant to provide fault tolerance to node crashes,
and improve read performance through load balancing. Figure 3.14(b) shows the re-
sults of the combined workload when data is replicated over three nodes.

80 3 DataDroplets

0

50

100

150

200

La
te

nc
y(

m
s)

0 5 103 1 104 1.5 104 2 104

Throughput(ops/sec)

without tags
with tags

(a) 100 nodes configuration without replication

0

20

40

60

L
a
te
n
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

no replication
3 replicas not minimized
3 replicas minimized
3 replicas asynchronously

(b) 100 nodes with replication

0

50

100

150

200

La
te
nc
y(
m
s)

0 5 103 1 104 1.5 104 2 104

Throughput(ops/sec)

(c) 200 nodes configuration without replication

Figure 3.14: System’s response time

The minimized and not minimized lines correspond both to a synchronous replica-
tion algorithm. As explained in Section 3.2.6, the minimized strategy takes advantage
of replication to minimize the number of nodes contacted per operation, having each
node responding for all the data it holds, while the other, on the contrary, leverages
replication to increase concurrent accesses to different nodes. The overall response
time is improved by 22% with the minimized strategy.

Despite the impact replication inevitably has on write operations, the overall re-
sponse time is improved by 27% (due to a high read-only request rate in the work-
load). Moreover, we can see that the overall gain of asynchronous replication is up
to 14%, despite the additional impact synchronous replication inevitably has on these
operations, which would not, per se, justify the increased complexity of the system.
It is actually the dependability aspect that matters most, allowing to provide seamless
fail over of crashed nodes.

3.4 Evaluation 81

Evaluation of the system’s elasticity

To assess the system’s response to a significant scale change, we conducted the previ-
ous experiments over the double of the nodes, two-hundred. Figure 3.14(c) depicts the
results.

Here, it should be observed that while the system appears to scale up very well
providing almost the double of throughput before getting into saturation, for a small
workload, up to two-thousand ops/sec with two-hundred nodes, there is a slightly
higher latency. This result motivates a judicious elastic management of the system
to maximize performance, let alone for economical and environmental reasons.

Evaluation of data placement strategies

Simulated setting The graphs in Figure 3.15 depict the performance of the sys-
tem when using the different placement strategies available in the simulated setting.
The workload has been firstly configured to only use the random strategy (the most
common in existing key-value stores), then configured to use the ordered placement
for both the tweets and timelines collections (for users placement has been
kept at random), and finally configured to exploit the tagged placement for tweets
(timelines were kept ordered and users at random). The random, ordered and
tagged lines in Figure 3.15 match these configurations.

We present the measurements for each of the seven workload operations (Fig-
ure 3.15(a) through 3.15(g)), and for the overall workload (Figure 3.15(h)). All runs
were conducted with a hundred nodes.

We can start by seeing that for write operations (statuses_update and
friendships_destroy) the system’s response time is very similar for all scenar-
ios (Figures 3.15(a)and 3.15(b)). Both operations read one user record, and subse-
quently add or update one of the tables. The costs of these operations are basically the
same in all the placement strategies.

The third writing operation, friendships_create, has a different impact,
though (Figure 3.15(c)). This operation also has a strong read component. When cre-
ating a follow relationship, the operation performs a statuses_user_timeline
which, as can be seen in Figure 3.15(d), is clearly favored when tweets are stored in
order.

Regarding read-only operations, the adopted data placement strategy may have a
high impact on latency, see Figures 3.15(d) through 3.15(g).

82 3 DataDroplets

0

20

40

60

80
L
at
en
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(a) statuses update op

0

20

40

60

80

L
at
en
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(b) friendships destroy op

0

50

100

150

200

250

L
a
te
n
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(c) friendships create op

0

50

100

150

200

250

L
a
te
n
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(d) statuses user timeline op

0

50

100

150

200

250

L
at
en
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(e) statuses mentions op

0

50

100

150

200

250

L
at
en
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(f) search contains hashtag op

0

10

20

30

40

L
at
en
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(g) statuses friends timeline op

0

50

100

150

200

L
a
te
n
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged

(h) Overall workload

Figure 3.15: System’s response time with a hundred simulated nodes

3.4 Evaluation 83

The statuses_user_timeline operation (Figures 3.15(d)) is mainly com-
posed by a range query (which retrieves a set of the most recent tweets of the user);
therefore, it is best served when tweets are (chronologically) ordered, minimizing
the number of nodes contacted. Taking advantage of SFC’s locality preserving prop-
erty grouping by tags still considerably outperforms the random strategy before satu-
ration.

Operations status_mentions and search_contains_hashtag are es-
sentially correlated searches over tweets, by user and by topic, respectively. There-
fore, as expected, they perform particularly well when the placement of tweets uses
the tagged strategy. For status_mentions, the tagged strategy is twice as fast
as the others, and search_contains_hashtag keeps a steady response time up
to ten thousand ops/sec, while with the other strategies the systems struggle from the
beginning.

Operation statuses_friends_timeline accesses the tweets collection
directly by key and sparsely. To construct the user’s timeline, the operation gets
the user’s tweets list entry from timelines, and for each tweetID it reads it from
tweets. These end up being direct and ungrouped (that is, single item) requests and,
as depicted in Figure 3.15(g), best served by the random and ordered placements.

Figure 3.15(h) depicts the response time for the combined workload. Overall, the
new SFC-based data placement strategy consistently outperforms the others with re-
sponses 40% faster.

0

5 · 107

1 · 108

1.5 · 108

T
ot
al

M
es
sa
ge
s

T
ot
al

M
es
sa
ge
s

0 50 100 150 200

NodesNodes

random
ordered
tagged

(a) Total number of messages exchanged with sys-
tem size

0

100

200

300

L
at
en
cy

(m
s)

0 100 200 300 400 500

Throughput (ops/sec)

random
ordered
tagged

(b) System’s response time

Figure 3.16: Additional evaluation results

Finally, it is worth noticing the substantial reduction of the number of exchanged
messages attained by using the tagged strategy. Figure 3.16(a) compares the total

84 3 DataDroplets

number of messages exchanged when using the random and tagged strategies. This
reduction is due to the restricted number of contacted nodes by the tagged strategy in
multi-item operations.

Real setting Figure 3.16(b) depicts the response time for the combined workload in
the real setting. The results in the real setting confirm the previous results from the
simulated setting. Overall, the new SFC-based data placement strategy consistently
outperforms the others.

The additional response time in the real setting, compared with the simulated set-
ting, is due to the use of a persistent storage.

Evaluation of replica placement strategy

0

50

100

150

200

L
at
en
cy

(m
s)

0 2.5 · 103 5 · 103 7.5 · 103 1 · 104

Throughput (ops/sec)

random
ordered
tagged
hybrid

Figure 3.17: Replica placement results

In all the experiments, three replicas were used. The random, ordered, and tagged

lines use three replicas using the same data placement strategy (the primary is de-
termined by the data placement strategy, while the backups are determined by the
successor-list replica strategy). In the hybrid line, the novel replica placement strategy
is being used with a different data placement strategy per replica, the list of replicas is
[random, ordered, tagged].

Figure 3.4.3 depicts the response time for the new replica placement strategy. As
the replica placement strategy chooses the best strategy for each type of operation, the

3.5 Discussion 85

overall performance is increased regarding the best standalone strategy, tagged.

3.4.4 Summary of results

DataDroplets aims at shifting the trade-offs established by current data stores toward
the needs of common business users. It provides additional consistency guarantees
and higher-level data processing primitives, smoothing the migration path for existing
applications. Specifically, DataDroplets adjusts to the access patterns required by most
current applications, which arbitrarily relate and search data by means of free-form
tags.

The results show the benefit, in request latency, of DataDroplets’ enhanced data
model and API, the minimal cost of synchronous replication, and attest the scalability
of DataDroplets.

The novel data placement strategy, based on multidimensional locality preserving
mappings, adjusts to access patterns found in many current applications, which arbi-
trarily relate and search data by means of free-form tags, and provides a substantial
improvement in overall query performance. Additionally, we show the usefulness of
having multiple simultaneous placement strategies in a multi-tenant system by sup-
porting also ordered placement, for range queries, and the usual random placement.
Moreover, the new replica placement strategy that combines different replica place-
ment strategies presents the low latency.

3.5 Discussion

Current large scale data stores focus on a specific narrow trade-off regarding con-
sistency, availability and migration cost that fits tightly their very large internal ap-
plication scenarios. While current approaches use either a hierarchical or decentral-
ized architecture, Clouder uses a hybrid architecture with two collaborating layers that
ease the offering of additional consistency guarantees and higher-level data processing
without hindering scalability.

For some applications single tuple and range operations are not enough. These ap-
plications have multi-tuple operations that access correlated tuples. However, current
data store APIs only provide single tuple operations or at most range operations over
tuples of a particular collection. Therefore, DataDroplets extends the data model of

86 3 DataDroplets

current data stores with tags, allowing to establish arbitrary relations between tuples,
which allows to efficiently retrieve them through a tag-based data partition strategy.

Moreover, while availability is commonly assumed, data consistency and fresh-
ness is usually severely hindered. Current data stores offer varying levels of tuple
consistency, but only PNUTS and Bigtable can offer tuple atomicity. However, in both
the burden is left to the application that must deal with multiple tuple versions. In
DataDroplets, if an application needs atomic guarantees per tuple, it simply uses the
default synchronous replication mode, and it will obtain it transparently without hav-
ing to maintain and deal with multiple tuple versions. Additionally, the replication at
the soft-state layer will be complemented with replication at the persistent-state layer,
where items are massively replicated through gossiping.

While existing data stores do data partitioning, taking into account only a single
tuple, randomly or in an ordered manner, DataDroplets also supports a data parti-
tion strategy that takes into account tuple correlations. Currently, it supports three
data partition strategies: random placement, ordered placement, and tagged placement
that handles dynamic multi-dimensional relationships of arbitrarily tagged tuples. The
novel tagged data placement strategy, based on multidimensional locality preserving
mappings, adjusts to access patterns found in many current applications, which arbi-
trarily relate and search data by means of free-form tags.

Moreover, the optimal solution to the data placement problem is dependent on
the workload. However, all existing strategies are biased to some kind of operation
and are not suited for a multi-tenant environment, where workloads with different re-
quirements may coexist. Therefore, we define a new strategy that combines successor
replication with a multi-hashing replica placement strategy. This allows the system to
automatically adapt to different workloads with different types of operations.

Chapter 4

SQL on large scale data stores

Most Web-scale applications, such as Facebook, MySpace, and Twitter, remain SQL-
based for their core data management (Rys 2011). Particularly, one of the most re-
quested additions to the Google App Engine platform has been a SQL database (Google
2012).

Given the prevalence of SQL as a query language for databases, Web-scale appli-
cations can highly benefit from an efficient SQL query engine running on large scale
data stores, which is able to scale with the database. Without full SQL support, it is
hard to provide a smooth migration, and this is a hurdle to the adoption of large scale
data stores by a wider potential market. Moreover, a high number of tools coupled
to SQL have been developed over the years. Consequently, having full SQL support
means that all these tools become immediately available to developers of Web-scale
applications.

Support for efficient SQL on an elastic data store poses several architectural chal-
lenges in the query engine, in fact, to the same extent as any scalable query en-
gine (Stonebraker et al. 2007; Stonebraker and Cattell 2011). In addition, it requires
solving the mismatch between the relational model and the data model of the target
large scale data store.

In this chapter, we present a proposal for easing migration of existing SQL appli-
cation code by providing a complete implementation of SQL with a standard JDBC
client interface that can be plugged in existing applications and middleware (for exam-
ple, object-relation mappers).

First, Section 4.1 presents the assumptions we make on the distributed query en-
gine. Section 4.2 describes the challenges for the efficient support of SQL on a large

87

88 4 SQL on large scale data stores

scale data store. Section 4.3 introduces the proposed architecture. Section 4.4 de-
scribes how it is implemented using Derby components and HBase. Finally, Sec-
tion 4.5 presents the experimental evaluation of the overhead and scalability of our
approach.

4.1 Assumptions

The query engine can be used from a JPA engine or directly by applications based on
SQL interfaces using JDBC and ODBC drivers. The transaction management is per-
formed by an external layer providing snapshot isolation (Berenson et al. 1995), and
the query engine must intercept transactional SQL queries, and explicitly provide the
start and commit timestamps for a transaction. Thus, it is assumed that the underlying
large scale data store provides the abstraction of a transactional tuple store. It should
expose primitive tuple set, get and scan operations that enforce snapshot isolation se-
mantics.

We assume that multiple instances of the query engine are used not only for high
availability, ensuring that the query engine is not a single point of failure, but also
for scalability to cope with a workload composed by a large number of concurrent
transactions. Moreover, for elasticity, instances of the query engine must be spawned
and terminated dynamically while the system is running.

We target potentially complex queries involving multiple relational joins; but as-
suming that they are highly selective and output (both as interim and final results)
a small to moderate number of rows when executed optimally. These queries are
issued, for instance, when navigating mapped object relations with Java Persistence
Query Language (JPQL). Applications using these queries belong to the constant and
bounded query scaling classes (Armbrust et al. 2011), and include On-Line Transaction
Processing (OLTP), and also interactive web applications, such as social networking
applications.

4.2 Challenges

Efficient and scalable support of SQL on an elastic large scale data store poses the
following main challenges:

4.2 Challenges 89

• Traditional RDBMS architectures include several legacy components that are
not suited to modern hardware, and impose an important overhead to transaction
processing (Harizopoulos et al. 2008) limiting both performance and scalability.

• The relational model and the data model of the data store present impedance
mismatches that have to be addressed (Meijer and Bierman 2011).

• To have acceptable performance, several challenges appear when processing
data stored in a large scale data store.

4.2.1 Scalable query processing

Traditional Relational Database Management Systems (RDBMS) are based on highly
centralized, rigid architectures that fail to cope with the increasing demand for scala-
bility as well as dependability, and are not cost-effective. High performance RDBMS
invariably rely on mainframe architectures or clustering based on a centralized shared
storage infrastructure (Lahiri et al. 2001). Although easy to setup and deploy, these
often require large investments upfront and have limited scalability (Stonebraker et al.
2007). Even distributed and parallel databases, which have been around for decades (Özsu
and Valduriez 1999), build on the same architecture; thus, they have the same scalabil-
ity limitations.

One common solution for traditional database scalability is sharding, where data
is partitioned across multiple databases (NetLog). Briefly, tables are broken horizon-
tally and distributed across multiple independent RDBMS servers. This is done using
fixed boundaries on data, and re-partitioning is necessary for load-balancing. How-
ever, this is operationally complex, and the process of re-partitioning imposes a major
load on I/O resources. Thus, most of the times sharding nullifies the key benefits of
the relational model while increasing total system cost and complexity.

One of the major reasons for this resides in traditional RDBMS architectures that
include several components, such as on-disk data structures, log-based recovery, and
buffer management, which were developed years ago, but are not suited to mod-
ern hardware. Those components impose a huge overhead to transaction process-
ing (Harizopoulos et al. 2008) limiting both performance and scalability, and they
should be removed from a scalable query processing system.

A DataBase Management System (DBMS) application that requires scalable per-
formance must offer high-level languages without jeopardizing performance, provide

90 4 SQL on large scale data stores

High Availability (HA) and automatic recovery, and allow to do almost all operations
on line and have administrative simplicity (Stonebraker and Cattell 2011).

If the query engine is embedded within the client application, there is no com-
munication overhead between the application and the query engine, and a high-level
language can be offered to applications without jeopardizing performance. Moreover,
if the query engine component is mostly stateless it can easily scale horizontally.

Using a query engine component, which is stateless regarding data and can be
executed without coordination among different client application instances, allows a
query engine to start without losing any data when an instance fails. Moreover, as the
query engine and the large scale data store scale independently the query engine takes
advantage of the elastic and high available properties of the used large scale data store
to achieve high availability with automatic recovery.

In order to minimize down-time, the database should be designed in a way that
most operations do not require to take the database off line. This is a major problem
in current RDBMS. By taking advantage of the underlying large scale data store, we
support flexible schema to add or remove attributes to an existing database without
interruption of the service. Moreover, as indexes are stored in the large scale data
store and as it provides flexible schema, they can be added or dropped. Regarding
provisioning, for the query engine layer new instances can be easily added or removed
from the system, while other instances remain on line. As the large scale data store
is fully elastic, it also allows to increase or decrease the number of nodes without
hindering availability.

4.2.2 Data model mismatch

Large scale data stores use a simple key-value store or at most variants of the Entity-
Attribute-Value (EAV) model (Nadkarni and Brandt 1998). This data model allows to
dynamically add new attributes that only apply to certain tuples. This flexibility of
the EAV data model is helpful in domains where the problem is itself amenable to
expansion or change over time. Another benefit of the EAV model that may help in the
conceptual data design is the multi-value attributes in which each attribute can have
more than one value.

One of the challenges faced is the mapping of the relational model to large scale
data store’s data models, while supporting SQL queries. Moreover, it implies mapping
relational tables and indexes to the data store tables in such a way that the processing

4.3 Architecture 91

capabilities of the data store are exploited at its best.
In a relational table, each column is typed (for example, char, date, integer, dec-

imal, varchar), and in indexes data is ordered according to the natural order of the
column data type. However, row keys in most large scale data store are plain byte
arrays. Therefore, in order to build and store indexes in the large scale data store while
preserving the data type’s order, we need to map row keys into plain bytes in such a
way that when the large scale data store compares them, the order of the relational
data type is preserved. Another mismatch lies in relational databases both primary and
secondary indexes can be composite, defined from multiple columns. Thus, we also
need to define a way to encode multiple indexed columns in the same large scale data
store row’s key.

4.2.3 Performance

The performance challenges in the proposed architecture arise from large scale data
stores offer a simple tuple store interface, allowing applications to insert, query, and
remove individual tuples or at most range queries based on the primary key of the
tuple. The range queries allow for fast iteration over ranges of rows, and allow to limit
the number and decide which column are to be returned. However, they don’t support
partial key scans, but index scans in RDBMS must perform equals and range queries
on all or a subset of the fields in the index.

Moreover, query processing relies on data statistics and the cost of each operator
for proper selection of the best query plan. However, this is done taking into account a
cost model defined for the current architecture of RDBMS. Thus, a major challenge is
how to adapt this cost model when using a query engine on a scalable large scale data
store.

4.3 Architecture

The proposed architecture is shown in Figure 4.2, in the context of a large scale data
store and a traditional RDBMS. A major motivation for a large scale data store is scal-
ability. As depicted in Figure 4.1, a typical large scale data store builds on a distributed
setting with multiple nodes of commodity hardware. Just by adding more nodes into
the system (that is, scaling out), one can not only increase the overall performance and
capacity of the system, but also its resilience, and thus availability by means of data

92 4 SQL on large scale data stores

larger scale data store application
large scale data store

application

get(key)
put(key,…)
delete(key)

scan(...)

large scale data store

large scale data store client
library

Figure 4.1: Large scale data stores architecture.

replication. By allowing clients to directly contact multiple fragments and replicas,
the system can also scale in terms of clients connected. To make this possible, they
provide a simple data model as well as primitive querying, and searching capabilities
that allow applications to insert, query, and remove individual items or at most range
queries based on the primary key of the item (Vilaça et al. 2010).

In sharp contrast, a RDBMS is organized as tables called relations, and developers
are not concerned with the storage structure but instead express queries in a high-level
language, SQL. SQL allows applications to conduct complex filtering and processing
capabilities, such as filtering, joining, grouping, ordering and counting.

Our proposal builds on a rewrite of the internal architecture of RDBMS by reusing
some existing components, by adding new components on large scale data stores as
well as removing several components that are not needed on modern hardware, which
would limit scalability. Toward understanding how components can be reused in our
proposal, we examine the internals of traditional RDBMS architecture, dividing it
roughly in a query processor and a storage manager functions, Figure 4.2(a).

The query processor is responsible for offering a relational SQL-based API for ap-
plications, and to translate the application queries, comprising two main stages: com-

4.3 Architecture 93

pilation and execution of the query. The compilation stage includes: (i) Starting from
an initial SQL query, the query is parsed and a parse tree for the query is generated;
(ii) the parse tree is converted to an initial implementation plan, represented by an al-
gebraic expression, which is then optimized using algebraic laws – the logical query
plan; (iii) the physical query plan is then constructed from the logical query plan,
which implies the choice of the operators to be used and the order in which they must
be executed, based on the statistics provided by the storage layer in order to select an
efficient execution plan. In the execution stage, the physical plan with the expected
lowest cost is executed calling into the storage layer through scan operators and per-
forming actual data manipulation. The storage manager is responsible for actually
storing and retrieving rows. Very briefly, this means mapping logical data items to
physical blocks, providing different indexing data structures, and performing locking
and logging for isolation and recovery.

SQL Application

SELECT * FROM

Buffer Cache

compiler optimizer

connection handler

Available Operators
selection projection join

seqscan indexscan

locks log block I/O

block
row
row

row

block
meta
meta

meta

SQL Application
SELECT * FROM

JDBC driver

block
index
index

index

Q
ue

ry

pr
oc

es
si

ng
St

or
ag

e
M

an
ag

em
en

t

St
at

is
tic

s

Tr
an

sa
ct

io
ns

(a) Centralized SQL RDBMS.

NoSQL Application

SELECT * FROM

NoSQL data store

compiler optimizer

connection handler

Available Operators

selection projection join

seqscan indexscan

row
row

row

SQL Application
SELECT * FROM

JDBC driver

index
index

index

meta meta meta

NoSQL client library

M
id

dl
ew

ar
e

Tr
an

sa
ct

io
ns

St
at

is
tic

s

(b) Distributed query engine (DQE).

Figure 4.2: Data management architectures.

The architecture proposed (Figure 4.2(b)) reuses a number of components from
the SQL query processor (shown in light gray). In detail, these are: the JDBC driver
and client connection handler, the compiler and the optimizer, and a set of generic
relational operator implementations. These components can be shielded from changes
as they depend only on components that are re-implemented (shown in medium gray),

94 4 SQL on large scale data stores

providing the same interfaces as those that in the RDBMS embody the centralized
storage functionality (shown in dark gray) and that are removed from our architecture.
In detail, the components that have to be re-implemented are:

• A mapping from the relational model to the data model of a large scale data
store. This includes: atomic data types and their representation; representation
of rows and tables; representation of indexes.

• A mapping from the relational schema to the datastore that allows data to be
interpreted as relational tables.

• Implementation of sequential and index scan operators. This includes: matching
the interface and data representation of the datastore; taking advantage of index-
ing and filtering capabilities in the datastore to minimize data network traffic.

• Computation and storage of statistics within the datastore, conveying statistics
to the optimizer to enable correct planning decisions.

• A stub of the transaction management.

The proposed architecture has the key advantage of being stateless regarding data.
In fact, Data Manipulation Language (DML) statements can be executed without co-
ordination among different client application instances. Therefore, the proposed archi-
tecture should retain the seamless scale-out of the large scale data store and application.

4.4 Prototype 95

4.4 Prototype

The prototype, DQE, has been developed in the context of the CumuloNimbo 1 Euro-
pean Union Seventh Framework Programme (FP7), project under grant agreement n.
257993.

In the context of the project, the HBase has been chosen as the large scale data
store as it is the best choice in terms of elasticity (Konstantinou et al. 2012), and is one
of the most successful, widely and even commercially used due to its robustness and
already considerable maturity.

The approach described in the previous Section is general and could be applied
to any large scale data store, particularly DataDroplets, taking advantage of its en-
riched data model and processing primitives. However, as explained in Section 4.1,
we assume that transaction management is performed by an external layer providing
snapshot isolation, and the underlying large scale data store provides the abstraction of
a transactional tuple store. The transactional tuple store should expose primitive tuple
set, get and scan operations that enforce snapshot isolation semantics. In the context
of the CumuloNimbo project, two alternative implementations (as further explained)
where developed on HBase. Implementing this for DataDroplets would require addi-
tional research outside the focus of this thesis. Thus, the presented prototype is built
on Apache Derby2, and uses HBase3 as the large scale data store.

This section starts with an overview of HBase, Derby and CumuloNimbo’s archi-
tecture. Then, the architecture of the prototype is presented, and a description of the
main design decisions involved in mapping the relational data model and Derby’s data
structures, to the HBase. It also describes how performance is improved by reducing
data transfer over the network, and how it fulfills both CumuloNimbo’s stacks.

4.4.1 HBase overview

HBase is a key-value based distributed data storage system based on Bigtable (Chang
et al. 2006). Thus, HBase’s data model is similar to Bigtable’s, Equation 2.2.

In HBase, data is stored in the form of HBase tables (HTable) that are multi-
dimensional sorted maps. The index of the map is the row’s key, column’s name,
and a timestamp. Columns are grouped into column families. Column families must

1http://www.cumulonimbo.eu/
2http://db.apache.org/derby/
3http://hbase.apache.org

http://www.cumulonimbo.eu/
http://db.apache.org/derby/
http://hbase.apache.org

96 4 SQL on large scale data stores

be created before data can be stored under any column key in that family. Data is
maintained in lexicographic order by row key. Finally, each column can have multiple
versions of the same data indexed by their timestamp.

A read or write operation is performed on a row using the row-key and one or more
column-keys. Update operations on a single row are atomic, that is, concurrent writes
on a single row are serialized. Any update performed is immediately visible to any
subsequent reads. HBase exports a non-blocking key-value interface on the data: put,
get, delete, and scan operations.

HBase closely matches the scale-out properties assumed, as HTables are horizon-
tally partitioned in regions. In turn, regions are assigned to RegionServers, and each
region is stored as an appendable file in the distributed file system, Hadoop File System
(HDFS) (Shvachko et al. 2010) based on GFS (Ghemawat et al. 2003).

4.4.2 Derby overview

Apache Derby is an open source relational database implemented entirely in Java and
available under the Apache License, Version 2.0. Besides providing a complete im-
plementation of SQL and JDBC, Derby has the advantage of already providing an
embedded mode.

The storage management layer of Derby is split into two main layers, access and
raw. The access layer presents a conglomerate (table or index)/row-based interface
to the SQL layer. It handles table scans, index scans, index lookups, indexing, sort-
ing, locking policies, transactions, isolation levels. The access layer sits on the raw
store, which provides the raw storage of rows in pages in files, transaction logging,
transaction management.

Following the architecture proposed in the previous chapter, the raw store was
removed in our prototype and some components of the access layer were replaced.

4.4.3 CumuloNimbo’s architecture

CumuloNimbo targets to obtain a highly scalable transactional platform as a service
(PaaS). One of its innovations will be attaining scalability without trading off consis-
tency as it is the norm in today’s PaaS.

CumuloNimbo’s approach lies in deconstructing transactional processing at fine
granularity components, and scaling each of these components in an independent but

4.4 Prototype 97

NoSQL Data Store

Query Engine

Application Server

Transaction
Management

Object Cache

Distributed File System

Storage

Elasticity
Management

Transactions

Concurrency
Controllers

Local
Txn

Managers

Commit
Sequencers

Snapashot
Server

Loggers

Elastic
Manager

Monitors

Load
Balancers

Cloud
Deployer

C
om

m
un

ic
at

io
n

In
fra

st
ru

ct
ur

e

Figure 4.3: Scalable PaaS Architecture

composable manner. The architecture consists of several tiers:

• Application server: This tier contains both a component container and a persis-
tent manager, such a Java EE container and a JPA manager, respectively.

• Object cache: This is a distributed object cache to improve the performance of
the application server.

• Query engine: This tier consists of a number of query engines able to process
SQL.

• Large scale data store: This tier caches file blocks to improve the performance
of the query engine.

• Distributed file system: This is the file system where tables are stored.

• Storage: The storage subsystem.

• Communication: The communication subsystem.

98 4 SQL on large scale data stores

• Transaction management: Based on an innovative transactional processing pro-
tocol, orchestrates transactional management at holistic level in a highly scalable
way.

• Elasticity management: Monitors each server of each tier, and balances the load
across server within the same tier, and reconfigures the number of servers in the
tiers to minimize the resources used to process the incoming load.

The CumuloNimbo has two alternative implementations of the architecture, as fol-
lows:

Holistic stack

In the first stack, CumuloNimbo holistically manages transactions across its tiers by
employing a cross-cutting implementation of snapshot isolation (Jimenez-Peris and
Patiño-Martinez Filled 2011). That is, the concurrency controller avoids concurrent
updates on the same objects, the distributed commit sequencer provides a global order-
ing for update transactions, and the distributed logger supports atomicity in a scalable
way by exploiting the high throughput storage infrastructure. Thus, it is sufficient for
the SI Light implementation to only provide a partial set of transactional guarantees to
the upper layers. The HBase Client is extended to have a limited form of snapshot iso-
lation by exploiting the multi-versioning support in HBase, without concerning with
conflict detection, logging, and failure recovery. Timestamp generation, both for start
and commit timestamps, is done at the commit sequencer, and atomicity is guaranteed
by the distributed logger and holistic recovery mechanism.

HBase transaction manager stack

The second stack fully implements the transactional logic at the large scale data store
layer, ReTSO (Junqueira et al. 2011). It implements comprehensive transaction man-
agement that is capable of operating in conjunction with the holistic stack, as well as
operating independently below the distributed query engine when the holistic compo-
nents are not employed. ReTSO is able to guarantee full atomicity and durability for
committed transactions. An open source implementation of this transactional support
for HBase, which enforces Snapshot Isolation semantics, is available an open source
project4.

4Omid - https://github.com/yahoo/omid

https://github.com/yahoo/omid

4.4 Prototype 99

Query engine layer

SQL Application

HRegion
Server

Storage
Layer

File System Layer

HRegion
Server

HRegion
Server

Data
Node

Data
Node

Data
Node

DQE

SQL Application

DQE

SQL Application

DQE

Master

Name
Node

Tr
an

sa
ct

io
n

M
an

ag
em

en
t

Figure 4.4: Architecture prototype

4.4.4 Prototype architecture

We now detail the query engine’s architecture. The query engine’s architecture builds
on traditional relational database management. However, instead of providing an em-
bedded storage engine, it interfaces with HBase for durability and basic indexing, and
with transaction management for snapshot isolation. A key feature of this architecture
is that no additional coordination is required for data manipulation statements; thus,
allowing the query engine to scale out in a distributed fashion.

The system is composed of the following layers: (i) query engine, (ii) storage, and
(iii) file system. Clients issue SQL transactional requests to any of the instances of the
query engine’s layer. Those instances can either be embedded in the application or be
dedicated server nodes. A query engine node communicates both with storage nodes
and the transaction management, executing queries and delivering results to applica-
tions. The storage layer supports multiple versions of data and exports a transactional
non-blocking key-value interface on the data: put, get, delete, and scan operations that
enforce Snapshot Isolation’s semantics.

We mostly reuse the query processing sub-system of Derby. However, the storage

100 4 SQL on large scale data stores

management sub-system is replaced to be able to operate on HBase. For query pro-
cessing, Derby’s compiler and optimizer were reused. Two new operators for index
and sequential data scans have been added to the set of Apache Derby’s generic rela-
tional operators. These operators leverage HBase’s indexing and filtering capabilities
to minimize the amount of data that needs to be fetched. The query engine translates
the user queries into some appropriate put, get, delete, and scan operations to be in-
voked on HBase. The SQL advanced operators, such as joins and aggregations, are not
supported by HBase and are implemented at the query engine.

When a query engine receives an SQL begin transaction, it sends a request to
the transaction management to receive the transaction start timestamp, which will be
included in all future requests sent from this transaction to the storage layer. When
the query engine receives the SQL commit/rollback request, it sends a commit/abort
request to the transaction manager.

The query engine processes ANSI SQL, and is fully compatible with JDBC and
ODBC client interfaces. Therefore, it supports the development of applications both
on application servers and applications built on SQL databases by directly offering an
SQL interface.

4.4.5 Relational-tuple store mapping

Relational tables and secondary indexes are mapped to the column-oriented data model
of HBase, the tuple store being used. Briefly, the data model of HBase can be described
as follows: Each HTable in HBase is a multi-dimensional sorted map.

We adopted a simple mapping from a relational table to an HTable. There is a
one-to-one mapping where the HBase row’s key is the relational primary key (simple
or compound), and all relational columns are mapped into a single column family.
Since relational columns are not multi-valued, each relational column is mapped to
a HTable column. The schema of relational tables is rigid, that is, every row in the
same table must have the same set of columns. However, the value for some relational
columns can be NULL; thus, a HTable column for a given row only exists if its original
relational column for that row is not NULL.

Furthermore, each secondary index (in the relational model) is mapped into an
additional HTable. The additional table is necessary so that data is ordered by the
indexed attributes. For each indexed attribute, an HTable row is added and its row’s
key is the indexed attribute. For unique indexes, the row has a single column with

4.4 Prototype 101

Number Name Address Telephone

1

2

3

John 999999999

Spain

Philip Portugal

666666666Martin

Portugal

NULL

(a) Relational Table

KeyKey Name Addres
s

Relational Column Family (CF)

1

2

3

John 999999999

Spain

Philip Portugal

666666666Martin

Portugal

Telephone

(b) Primary Key HTable

Key Column1Key Key

Relational CF

999999999

666666666

1

2

(c) Unique Index HTable

KeyKey

Relational Column Family

1 2 3

Spain

Portugal

(d) Non-unique Index HTable

Figure 4.5: Data model mapping

its value being the key of the matching indexed row in the primary key table. For
non-unique indexes, there is one column per matching indexed row with the name of
the column being the matching row’s key. Figure 4.5(a) depicts an example relational
table. The column Number is the primary key, and the table has two additional indexes:
one unique index on column Telephone, and a non-unique index on column Address.
Therefore, the mapping will have three HTables: base data, Figure 4.5(b), unique
index on column Telephone, Figure 4.5(c), and non-unique index on column Address,
Figure 4.5(d).

4.4.6 Optimizing data transfer

To reduce network traffic between the query engine and HBase, the implementation
of sequential and index scan operators takes advantage of the indexing and filtering
capabilities in the HBase data store.

For index scans, we need to maintain data ordered by one or more columns. This
allows restricting the desired rows for a given scan by optionally specifying the start
and the stop keys. In a relational table each column is typed and data is ordered ac-

102 4 SQL on large scale data stores

cording to the natural order of the indexed column data type. However, row keys in
HBase are plain byte arrays and neither Derby or HBase byte encoding preserve the
data type’s natural order. In order to build and store indexes in HBase maintaining
the data type’s order we had implemented proper encoding for integer, decimal, char,
varchar and date types. As indexes may be composite, besides each specific data type
encoding, we also need to define a way to encode multiple indexed columns in the
same byte array. We do so by simply concatenating them from left to right, according
to the order they are defined in the index using a pre-defined separator.

In HBase, the start and stop keys of a scan must always refer to all the columns
defined in the index. However, when using compound indexes, the Query Engine may
generate scans using subsets of the index columns. Indeed, an index scan can use equal
conditions on any prefix of the indexed columns (from left to right) and at most one
range condition on the rightmost queried column. In order to map these partial scans,
the default start and stop keys in HBase are not used, but instead the scan expression
is run through HBase’s BinaryPrefixComparator filter.

The above mechanisms reduce the traffic between the query engine and HBase by
only bringing the rows that match the range of the index scan. However, the scan can
also select non-indexed columns. A naı̈ve implementation of this selection would fetch
all rows from the index scan and test the relevant columns row by row.

In detail, doing so on HBase would require a full table scan, which means fetch-
ing all the table rows from the different regions and possible different RegionServers.
Therefore, the full table would be brought to the query engine instance, and only then
discard those rows not selected by the filter. To mitigate this performance overhead,
particularly for low selective queries that this approach may incur, the whole selection
is pushed down into HBase. This is done by using the SingleColumnValueFilter filter
to test a single column, and to combine them respecting the conjunctive normal form,
using the FilterList filter. The latter represents an ordered list of filters that are eval-
uated with a specified boolean operator FilterList.Operator.MUST PASS ALL (AND)
or FilterList.Operator.MUST PASS ONE (OR).

4.4.7 Scan costs

Regarding the cost model for selection of proper scan operators, we have defined a
model that extends the existing model taking into account the execution time of the
involved HBase operations for each type of scan operator. Briefly, table scans and

4.4 Prototype 103

Figure 4.6: Multi-architecture interface

primary key index scans in DQE involve a HBase Scan operation; secondary indexes
involve a HBase Scan on the index HTable, and possibly a further Get (done in batchs)
per index row to retrieve additional data from the base table. Moreover, we have
measured the impact of the scan size and number of selected, and projected columns in
the Scan execution time. These costs have been added to the model using a calibration
database (Gardarin et al. 1996).

4.4.8 Support for multiple architectures

The prototype can be configured to run with both CumuloNimbo’s stacks, and addi-
tionally using standard HBase for debug and performance comparison. As a result,
generic interfaces to the transactional HBase (TupleStoreHTable) and the trans-
action manager (TupleStoreTransaction) were defined, as shown in Figure 4.6.

Each query engine instance preserves transactional contexts and consistency through
the interface to the CumuloNimbo’s transactional framework. The implementation
of the interface depends on the considered stack, it can be a thin adapter to HBase

104 4 SQL on large scale data stores

(Holistic), a full-fledged transactional logic component implemented in HBase (HBase
Transaction Manager), or vanilla HBase.

When running the HBase standard stack, the TupleStoreNoTransaction

is used and as standard HBase has no transactional context it does nothing, and the
TupleStoreHTableVanilla ignores the transaction context.

Regarding the CumuloNimbo’s stacks, the behavior of each stack is as follows.
For the Holistic stack the class TupleStoreHolisticTransaction behaves as
follows:

• On starting a transaction, builds a local transaction context by receiving the
transaction start timestamp from the distributed application server layer, through
the STARTTS(?) procedure;

• This context is provided to TupleStoreHTableHolistic, whenever it is
used in the context of the same transaction;

• Before transaction termination, the distributed application server layer sets the
commit timestamp using the COMMITTS(?);

• Upon transaction termination, it notifies the HBase thin client setting the commit
timestamp.

On the other hand, for the HBase Transaction Manager stack, the class
TupleStoreNonHolisticTransaction behaves as follows:

• On starting a transaction, the query engine receives from the HBase Transaction
Manager the transaction state (start timestamp);

• This state is used whenever data is fetched from or written back to HBase, us-
ing the TupleStoreHTableNonHolistic class by pointing to the rele-
vant versions of each row, using the transaction’s start timestamp to read from
the right snapshot;

• Upon transaction termination, a commit request with the transaction context is
sent to the HBase Transaction Manager.

4.5 Evaluation 105

4.5 Evaluation

We did the evaluation of the prototype both with vanilla HBase and with one of the
stacks of the CumuloNimbo with transactional guarantees. The former allows us to
stress the distributed query engine layer, showing its overhead and scale-out properties
on HBase, preserving its isolation semantics, row level atomicity. The latter, allows us
to see the scale-out of the full stack for a highly scalable transactional platform.

4.5.1 Test workloads

Yahoo! Cloud Serving Benchmark, YCSB (Cooper et al. 2010), was designed to
benchmark the performance of large scale data stores under different workloads. It
has client implementations for several large scale data stores and a JDBC client for
RDBMs. We have used the HBase and JDBC clients without further modifications.

Additionally, we run an industry standard on-line transaction processing SQL bench-
mark, TPC-C. It mimics a whole-sale supplier with a number of geographically dis-
tributed sales districts and associated warehouses. The warehouses are hotspots of the
system, and the benchmark defines ten clients per warehouse.

TPC-C specifies five transactions: NewOrder with 44% of the occurrences; Pay-
ment with 44%; OrderStatus with 4%; Delivery with 4%; and StockLevel with 4%.
The NewOrder, Payment and Delivery are update transactions, while the others are
read-only. The traffic is a mixture of 8% read-only and 92% update transactions; there-
fore, it is a write intensive benchmark.

We have used two implementations for TPC-C: a SQL-based implementation and
an implementation optimized for HBase.

The former is an existing SQL implementation 5, without modifications. The latter
is an existing TPC-C implementation optimized for HBase6. Briefly, in the HBase
implementation TPC-C columns are grouped into column families, named differently
for optimization, and data storage layout has been optimized.

4.5.2 HBase

We measured the overhead of our proposal and its scale-out properties running on
HBase.

5BenchmarkSQL - http://sourceforge.net/projects/benchmarksql/
6PyTPCC - https://github.com/apavlo/py-tpcc/wiki/HBase-Driver

http://sourceforge.net/projects/benchmarksql/
https://github.com/apavlo/py-tpcc/wiki/HBase-Driver

106 4 SQL on large scale data stores

Overhead

We measured the overhead of our proposal in terms of latency, compared to both stan-
dard HBase client and a traditional RDBMS, Derby, using a typical benchmark of large
scale data stores, YCSB. Moreover, we evaluated the throughput of our proposal under
the load of a traditional database workload, TPC-C, compared to traditional RDBMs
in a single machine.

Experimental setting

The machines used for those experiments have 2.4 GHz Dual-Core AMD Opteron(tm)
Processor, with 4GB memory and a local SATA disk.

For these experiments, two machines were used for the evaluation of our proposal:
one to run the workload generator, either YCSB or TPC-C, using an embedded connec-
tion to the DQE; and another one running the database depending on the configuration,
either HBase or standard Derby server. HBase was run in standalone mode, meaning
that the HBase master and HBase RegionServer were collocated in the same machine
using the local filesystem. Regarding standard Derby, we used the weaker isolation
level, TRANSACTION READ UNCOMMITTED (ANSI level 0).

The YCSB database was populated with a hundred thousand rows (185MB) and
the workload consists of one million operations. The proportion for the different types
of operations was read=0.6, update=0.2 and scan=0.2. The operations are distributed
uniformly over database rows. The size of scan operator was also a uniform random
number between one and ten. Each client has one or fifty threads and a target through-
put of a hundred operations per second.

The TPC-C database was populated with ten warehouses resulting in a database
with 5GB, and the number of client threads varied from one to a hundred.

Results

The overhead in terms of average latency (in milliseconds) for the YCSB workload
is shown in Table 4.1. We compare the overhead of our proposal, DQE, against the
standard HBase client, and also with a traditional centralized SQL RDBMS, Derby.

The results show that for all types of operations the query engine has a minimal
overhead compared to the direct usage of HBase. The additional overhead is due to
SQL processing and additional marshaling/unmarshaling. The results also show that
the DQE has similar latencies of a traditional centralized RDBMS.

4.5 Evaluation 107

Table 4.1: Overhead results (ms)
Workload 1 c/ 100 tps 50 c/ 100 tps
Operation Derby HBase DQE Derby HBase DQE

Insert 1.45 0.58 0.93 23 1.04 1.98
Update 0.92 0.51 1.3 1.39 2.66 3.1
Read 0.53 0.53 0.79 0.97 1.63 1.7
Scan 3.3 1.43 2.9 4.48 4.64 6.1

0

500

1000

1500

2000

2500

T
h
ro
u
g
h
p
u
t
(o
p
s/
m
in
)

T
h
ro
u
g
h
p
u
t
(o
p
s/
m
in
)

0 20 40 60 80 100

ClientsClients

Derby
DQE

(a) Throughput

0

500

1000

1500

2000

2500

L
a
te
n
cy

(m
s)

0 20 40 60 80 100

Clients

Derby
DQE

(b) Latency

Figure 4.7: TPC-C single machine results

We measured the overhead of our proposal with a typical benchmark of large scale
data stores and restricted to simple operations, and with a traditional benchmark of
relational databases (TPC-C) with complex operations. The throughput and latency
for DQE, and standard Derby for the TPC-C benchmark are depicted in Figure 4.7.

The throughput results, Figure 4.7(a), show that our proposal has higher throughput
than a traditional RDBMS even with a single client. Moreover, the peak throughput
with a single database instance is also higher with our proposal. However, while the
traditional RDBMS is offering transactional guarantees, in this setting DQE is using
default HBase, preserving the isolation semantics offered by HBase. Oppositely to
traditional RDBMS, our solution scaled out by allowing to add both additional storage
nodes and query engine instances, as further shown.

The latency results, Figure 4.7(b), corroborate the throughput results, DQE has
lower latencies than Derby.

108 4 SQL on large scale data stores

0

5 · 104

1 · 105

1.5 · 105
T
h
ro
u
gh

p
u
t
(t
p
m
C
)

0 5 10 15 20 25 30

Nodes

DQE
PyTPCC

(a) Throughput

200

300

400

500

600

700

L
at
en

cy
(m

s)

0 5 10 15 20 25 30

Nodes

DQE
PyTPCC

(b) Latency

Figure 4.8: TPC-C scaling out results

Scale out

We evaluated the scalability of our proposal in terms of achieving increased throughput
by scaling out the system from a cluster with a single RegionServer to thirty.

Experimental setting

We ran the experiments on a cluster of forty-two machines with 3.10GHz GHz
Quad-Core i3-2100 CPU, with 4GB memory and a local SATA disk.

The TPC-C workload has run from a varying number of machines. For our pro-
posal, we varied the number of client machines from one to ten, each running a hundred
and fifty client threads. Each client machine also ran an DQE instance in embedded
mode.

One machine was used to run the HDFS namenode, HBase Master and Zookeper (Hunt
et al. 2010). The remaining machines are RegionServers, each configured with a heap
of 3GB, and also running a HDFS datanode instance.

The TPC-C database was populated according to the number of RegionServers,
ranging from five warehouses for a single RegionServer to a hundred and fifty ware-
houses for thirty RegionServers. All TPC-C tables were partitioned and distributed, so
there were five warehouses per RegionServer each handling a total of fifty clients.

Results

We evaluated the scalability in terms of achieving increased throughput by scaling
out the system from a cluster with a single RegionServer to thirty RegionServers.

The throughput under the scaling-out of the system with one, six, twelve, eighteen,

4.5 Evaluation 109

twenty-four, and thirty RegionServers is depicted in Figure 4.8(a). The results show
that our proposal presents linear scalability. This is mainly due to the scale indepen-
dence of the query processing layer and the large scale data store layer. Moreover, as
previously shown, the query processing layer has a low overhead and has the advantage
of being stateless.

Furthermore, while our proposal, using an existing SQL implementation, has a
slightly lower throughput for one and six RegionServers than the implementation
specifically developed and optimized for HBase, it scales better.

This can be mainly attributed to the optimizations achieved by the distributed query
engine that take advantage of relational operators, filtering and secondary indexes,
while manual optimizations and de-normalization still incur on greater complexity re-
sulting in a greater overhead, and affecting the desired scalability.

In this specific case the distributed query engine can greatly restrict the amount of
data retrieved from HBase by also taking advantage of HBase Filters to select non-
indexed columns, as previously explained. As a matter of fact, the network traffic
when using our proposal is much lower than using the TPC-C implementation for
HBase. This prevents us from getting results for this implementation with more than
eighteen RegionServers, because network was saturated.

The result for latency, Figure 4.8(b), confirms these statements.

4.5.3 HBase transaction manager

We also measured the scalability of our proposal with transactional guarantees us-
ing the CumuloNimbo HBase Transaction Manager’s stack compared to traditional
RDBMs, MySQL. We evaluated our prototype in two settings. The first measured the
overhead of our prototype in terms of latency, and the second measured its scalability
with the performance metric being the throughput.

For these tests we used a modified version of YCSB. The vanilla implementation
operates on single rows. To benchmark the performance of multirow transactions, we
modified YCSB to add a multirow operation.

Experimental setting

We ran the experiments on a cluster of thirty-six machines, six of which are used
to run the HDFS namenode, HBase Master, the SO server, a Zookeeper ensemble

110 4 SQL on large scale data stores

and a Bookkeeper ensemble, which implements a WAL replicated on multiple remote
servers (Zookeeper (Hunt et al. 2010) and Bookkeeper ensembles are collocated on
the same three machines). Bookkeeper 7 is used for durability of transaction statuses,
it maintains a WAL in multiple remote nodes, for recovery. The YCSB workload is
run from five machines, each running a hundred client threads. We use the remaining
machines as RegionServers, each configured with a heap of 16GB. Each machine has
two Xeon Quad-Core 2.40Ghz processors, 24GB of memory, gigabit Ethernet and four
SATA hard disks. MySQL is configured with a single management node and a single
MySQL daemon. The number of threads per client is set to ten, as higher would trigger
the daemon to stop accepting new connections. We use NDBCluster storage back-end
over a multiples of three machines. Multiples of 3 have to be used as we specify a
replication level of three to match the level of redundancy offered by HDFS. On each
NDBNode, Data and Index memory were both set to 4GB. We set the number of log
segments to two-hundred so that the high rate of requests would not overwhelm the
write-ahead log.

Results

Here, we evaluate how our proposal scales with the number of RegionServers in a
database of twenty million rows. We tested four workloads: read-only, single-row
write, multi-row write, and mixed, which consisted of 30% read, 40% multi-row write,
and 30% scan. Rows were selected at random using a uniform distribution. The size
of both scan and multi-row write is a uniform random number between one and ten.

The results are depicted in Figure 4.9. Because of larger delays for reads in our
system, with low number of machines, our performance is lower than that of HBase
(Figure 4.9(a)). With the increase in number of RegionServers, the extra load dis-
tributes among them and our system’s performance approaches that of HBase. After a
certain point, the network or the HDFS saturates and the performance levels off. The
performance with write-only workload is in general less than with read-only workload,
since its frequent changes into the regions leads to more frequent calls for compaction,
which is an expensive operation in HBase. RegionServers batch the writes from all
the threads into one request to the WAL; therefore, impose much less overhead on the
network and the WAL. Since writing into HDFS, which here plays the role of a WAL
for RegionServers, is not the bottleneck, the major overhead in write-only traffic is the

7http://zookeeper.apache.org/bookkeeper

http://zookeeper.apache.org/bookkeeper

4.5 Evaluation 111

0

5 · 104

1 · 105

1.5 · 105

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

(a) Read-Only

0

2 · 104

4 · 104

6 · 104

8 · 104

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

(b) Write-Only (single-row)

0

5 · 103

1 · 104

1.5 · 104

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

(c) Write-Only (multi-row)

0

5 · 103

1 · 104

1.5 · 104

2 · 104

2.5 · 104

T
h
ro
u
gh

p
u
t
(o
p
s/
se
c)

0 5 10 15 20 25

Number of storage nodes

HBase
SO+DQE
MySQL

(d) Mixed

Figure 4.9: Machine scaling results

message processing cost at RegionServers. With more RegionServers, this overhead
is split among more nodes; therefore, each RegionServer could service more write re-
quests. The write operations in HBase (and accordingly to our system) still scale well
with the number of RegionServers. The system is, therefore, not saturated even with
twenty-five RegionServers. The same feature also alleviates the overhead of the addi-
tional write into the PendingWrite column. The throughput of our system is still less
than HBase, since we have to write into HBase twice: once with the start timestamp,
and once with the commit timestamp obtained after the commit. The same behavior
of write operations in the mixed workload makes it scale better. The Omid+DQE,
with full SQL transactional support, scales as well as HBase, while maintaining good
throughput.

In all the experiments, it outperforms MySQL. This difference becomes more sig-
nificant when the proportion of reads in the workload is bigger.

112 4 SQL on large scale data stores

4.5.4 Summary of results

The proposed approach provides a SQL query engine for a large scale data store, in-
cluding the standard JDBC client interface. The result is a query engine that can be
either embedded in the application as a middleware layer or run as dedicated server
instances. In both cases, there is no need for central components or distributed coordi-
nation; thus, it is able to scale out.

The feasibility of the approach is demonstrated by the performance results ob-
tained with YCSB and TPC-C. Moreover, the comparison with a TPC-C implemen-
tation optimized for HBase shows that by simply using the distributed query engine,
SQL applications can be easily run and even achieve better results than with manual
optimizations.

Furthermore, the evaluation of our proposal, in the context of the CumuloNimbo’s
architecture with a transaction manager enforcing Snapshot Isolation, shows the sys-
tem using DQE for query processing scales as well as HBase, and outperforms MySQL.

4.6 Discussion

Recently, several proposals for middleware that expose higher-level query interfaces on
the barebones key-value primitives have appear. Many of these aim at approximating
the traditional SQL abstraction, ranging from shallow SQL-like syntax for simple key-
value queries to translation of analytical queries into map-reduce jobs. However, they
only offer a subset of the processing facilities offered by SQL, and define new query
languages similar to SQL. This implies that applications must be written specifically
for them using their data model, and some queries must be written in application code.
This is due to to the lack of support for complex processing as general joins are not
offered by those systems.

In this chapter, we propose a solution for the migration of existing SQL applica-
tion code by providing a complete implementation of SQL on large scale data stores
with a standard JDBC client interface, which can be plugged in existing applications
and middleware (for example, object-relation mappers). The solution builds on query
engine’s components from traditional RDBMs.

Chapter 5

Conclusions

With cloud-based large scale data stores in Platform-as-a-Service offerings, such as
Google Data Store API in Google App Engine and Amazon’s DynamoDB, and open
source packages, such as HBase and Cassandra, large scale data stores become attrac-
tive for a wider spectrum of applications. However, they are in strong contrast with
traditional relational databases, presenting very simple data models and APIs. They
lack most of the established relational data management operations, and relax consis-
tency guarantees, providing eventual consistency.

Given the prevalence of traditional relational databases, Web-scale applications can
highly benefit from some of their features in large scale data stores without jeopardiz-
ing scalability. Without them it is hard to provide a smooth migration, and this is a
hurdle to the adoption of large scale data stores by a wider potential market.

Our proposal resides in exploring two complementary approaches to provide ad-
ditional consistency guarantees and higher-level data processing primitives in large
scale data stores: extending data stores with additional operations, such as general
multi-item operations, and coupling data stores with existent processing facilities.

One one hand, we start by proposing a new architecture for large scale data stores
that allows to find the right trade-offs among flexible usage, efficiency, fault tolerance
and quality of service, through a clear separation of concerns between different func-
tional aspects of the system. Then, taking into account that existing large scale data
stores do not consider general multi-item operations, we devised a new multi-tuple data
placement strategy, which allows to efficiently store and retrieve large sets of related
data at once. Multi-tuple operations leverage disclosed data relations to manipulate
sets of comparable or arbitrarily related elements. Evaluation results show the benefits

113

114 5 Conclusions

in: request latency of DataDroplets’ enhanced data model and API; the minimal cost
of synchronous replication; attesting the scalability of DataDroplets; and a substantial
improvement in overall query performance when using the novel data placement strat-
egy. Additionally, we show the usefulness of having multiple simultaneous placement
strategies in a multi-tenant system by also supporting ordered placement for range
queries, and the usual random placement. Moreover, the new replica placement strat-
egy that combines different replica placement strategies presents the lowest latency.

On the other hand, we provide a SQL query engine for a large scale data store,
including the standard JDBC client interface. The result is a query engine that can
be embedded in the application as a middleware layer, without the need for central
components or distributed coordination; thus, it does not impact the ability to scale
out. Evaluation results show the minimal overhead of the query engine and the ability
to scale out SQL based applications.

All the contributions have been implemented and evaluated with realistic bench-
marks.

5.1 Future work

In extension to the work presented in this thesis, we believe that several points are
worth further research.

Clouder persistent-state layer This thesis’s focus was on the major problems of the
soft-state layer of Clouder. The work on the underlying persistent-state layer is future
work. As previously said, the main design ideas for the persistent-state layer can be
found in a position paper (Matos et al. 2011).

The first issue to be researched is how to rely on an epidemic dissemination pro-
tocol to spread data and operations to relevant nodes, taking advantage of the inherent
scalability and ability to mask transient node and link failures.

Multi-master replication in DataDroplets Currently, DataDroplets has a simple
configurable primary-backup replication protocol that can work from asynchronous
mode to synchronous mode. Recent work has also proposed mechanisms to provide
strong consistency in key-value stores (Glendenning et al. 2011; Lloyd et al. 2011).

It may be interesting to explore multi-master replication used in traditional RDBMS,

5.1 Future work 115

in the context of large scale data stores that may be adaptive, with the number of repli-
cas defined in a dynamic fashion, according to the current load.

Formal analysis A recent article presents a mathematical data model for the most
common large scale data stores, and shows that their data model is the mathematical
dual of SQL’s relational data model of foreign-/primary-key relationships (Meijer and
Bierman 2011). It may be interesting to exploit this relation between the SQL and
large scale data stores for a formal analysis of DQE, the couple of a SQL processor on
a large scale data store.

Moreover, we think that it may be interesting to explore systems similar to the one
described in Zellag and Kemme (Zellag and Kemme 2011). These systems quantify
and classify consistency anomalies in multi-tier architectures to exploit the overall
consistency given by the CumuloNimbo’s architecture, Figure 4.3, which deconstructs
transactional processing at fine granularity components.

Aggregates and pre-computed views For queries with complex joins and aggre-
gates, the current version of DQE requires the bulk of data to be fetched from the
large scale data store to the query engine, and most of it to be later discarded after the
processing.

It may be interesting to explore how to further extend large scale data stores by
pushing some traditional relational operators and optimizations into it. One approach
can be through the maintenance of materialized views in large scale data stores, when
requested by the query engine.

This can be particularly useful for applications that depend on the continuous pro-
cessing of dynamic data for the prompt answer to user queries, such as the computation
of network trends in social networks.

Snapshot Isolation versioning DQE assumes that the underlying large scale data
store provides the abstraction of a transactional tuple store with primitive tuple set,
get and scan operations that enforce Snapshot Isolation semantics. The evaluation
presented in this thesis uses an implementation on HBase that takes advantage of its
multiple versions. However, not all large scale data stores support multiple versions.
It may be interesting to explore how to offer a lightweight transactional layer on any
large scale data stores.

116 5 Conclusions

Large scale data stores’ elasticity Large scale data stores were designed to take
advantage of large resource pools, and provide high availability and high performance
levels. Moreover, they were designed to be able to cope with resource availability
changes. It is possible, for instance, to add or remove database nodes from the system,
and the database will handle such change. However, they are not elastic even though
they can handle elasticity: an external entity is required to control when and how to
add and remove nodes. Some recent research work (Lim et al. 2010; Trushkowsky
et al. 2011; Konstantinou et al. 2011) is striving for elasticity in large scale data stores.
The approach taken is to gather system information and add or remove nodes from the
system in order to adjust it to the demands.

Nevertheless, simply adding and removing nodes is insufficient as different work-
loads have different access patterns that may change over time.

Bibliography

Michael Armbrust, Nick Lanham, Stephen Tu, Armando Fox, Michael J. Franklin, and
David A. Patterson. The case for PIQL: a performance insightful query language.
In Proceedings of the 1st ACM symposium on Cloud computing, SoCC ’10, pages
131–136, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0036-0. doi: 10.
1145/1807128.1807149. URL http://doi.acm.org/10.1145/1807128.

1807149. - Cited on page 38.

Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin,
and David A. Patterson. PIQL: success-tolerant query processing in the cloud. Proc.

VLDB Endow., 5(3):181–192, November 2011. - Cited on page 88.

Jason Baker, Chris Bondç, James C. Corbett, J. J. Furman, Andrey Khorlin, James Lar-
son, Jean M. L´eon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore:
Providing Scalable, Highly Available Storage for Interactive Services. In CIDR,
2011. - Cited on page 38.

A.-L. Barabási and E. Bonabeau. Scale-free networks. Scientific American, 288:60–
69, 2003. - Cited on page 76.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A critique of ANSI SQL isolation levels. SIGMOD Rec., 24(2):1–10, May
1995. ISSN 0163-5808. doi: 10.1145/568271.223785. URL http://doi.acm.

org/10.1145/568271.223785. - Cited on page 88.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control

and Recovery in Database Systems. Addison-Wesley, 1987. ISBN 0-201-10715-5.
- Cited on page 3.

Ashwin R. Bharambe, Mukesh Agrawal, and Srinivasan Seshan. Mercury: support-
ing scalable multi-attribute range queries. SIGCOMM Computer Communication

117

http://doi.acm.org/10.1145/1807128.1807149
http://doi.acm.org/10.1145/1807128.1807149
http://doi.acm.org/10.1145/568271.223785
http://doi.acm.org/10.1145/568271.223785

118 Bibliography

Review, 34(4):353–366, 2004. ISSN 0146-4833. doi: http://doi.acm.org/10.1145/
1030194.1015507. - Cited on pages 19 and 21.

Kenneth Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and Yaron
Minsky. Bimodal Multicast. ACM Transactions on Computer Systems., 17(2):41–
88, 1999. ISSN 0734-2071. doi: http://doi.acm.org/10.1145/312203.312207. -
Cited on page 46.

Danah Boyd, Scott Golder, and Gilad Lotan. Tweet tweet retweet: Conversational
aspects of retweeting on twitter. In IEEE Computer Society, editor, Proceedings of

HICSS-43, January 2010. - Cited on pages 75 and 76.

Eric A. Brewer. Towards robust distributed systems (abstract). In PODC ’00: Pro-

ceedings of the nineteenth annual ACM symposium on Principles of distributed com-

puting, page 7, New York, NY, USA, 2000. ACM. ISBN 1-58113-183-6. doi:
http://doi.acm.org/10.1145/343477.343502. - Cited on page 3.

A. R. Butz. Alternative algorithm for hilbert’s space-filling curve. IEEE Trans. Com-

put., 20(4):424–426, 1971. ISSN 0018-9340. doi: http://dx.doi.org/10.1109/T-C.
1971.223258. - Cited on page 62.

J.C.S. Cardoso, C. Baquero, and P.S. Almeida. Probabilistic estimation of network size
and diameter. In Dependable Computing, 2009. LADC ’09. Fourth Latin-American

Symposium on, pages 33 –40, 2009. doi: 10.1109/LADC.2009.19. - Cited on
page 46.

Nuno Carvalho, Jose Pereira, Rui Oliveira, and Luis Rodrigues. Emergent structure
in unstructured epidemic multicast. In DSN ’07: Proceedings of the 37th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks, pages
481–490, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
2855-4. doi: http://dx.doi.org/10.1109/DSN.2007.40. - Cited on page 43.

Miguel Castro, Manuel Costa, and Antony Rowstron. Should we build gnutella on
a structured overlay? SIGCOMM Comput. Commun. Rev., 34:131–136, January
2004. ISSN 0146-4833. doi: http://doi.acm.org/10.1145/972374.972397. URL
http://doi.acm.org/10.1145/972374.972397. - Cited on page 10.

http://doi.acm.org/10.1145/972374.972397

Bibliography 119

R. Chand and P. Felber. Semantic peer-to-peer overlays for publish/subscribe net-
works. In Proceedings of the International Conference on Parallel and Distributed

Computing (Euro-Par’05), August 2005. - Cited on page 47.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a
distributed storage system for structured data. In OSDI’06, 2006. - Cited on pages 2,
11, 25, 60 and 95.

Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony LaMarca, Scott
Shenker, and Joseph Hellerstein. A case study in building layered DHT appli-
cations. In SIGCOMM ’05: Proceedings of the 2005 conference on Applica-

tions, technologies, architectures, and protocols for computer communications,
pages 97–108, New York, NY, USA, 2005. ACM. ISBN 1-59593-009-4. doi:
http://doi.acm.org/10.1145/1080091.1080104. - Cited on pages 19 and 20.

E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13:377–387, June 1970. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/362384.
362685. URL http://doi.acm.org/10.1145/362384.362685. - Cited
on page 35.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 2008. - Cited
on pages 2, 11, 24 and 60.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st

ACM symposium on Cloud computing, SoCC ’10, pages 143–154, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0036-0. doi: 10.1145/1807128.1807152.
URL http://doi.acm.org/10.1145/1807128.1807152. - Cited on
page 105.

Nuno Cruces, Rodrigo Rodrigues, and Paulo Ferreira. Pastel: Bridging the Gap be-
tween Structured and Large-State Overlays. In Proceedings of the 2008 Eighth

IEEE International Symposium on Cluster Computing and the Grid, CCGRID ’08,

http://doi.acm.org/10.1145/362384.362685
http://doi.acm.org/10.1145/1807128.1807152

120 Bibliography

pages 49–57, Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-
0-7695-3156-4. doi: 10.1109/CCGRID.2008.72. URL http://dx.doi.org/

10.1109/CCGRID.2008.72. - Cited on page 17.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008. ISSN 0001-0782. doi: 10.
1145/1327452.1327492. URL http://doi.acm.org/10.1145/1327452.

1327492. - Cited on pages 3, 43 and 48.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: amazon’s highly available key-value store. In Pro-

ceedings of twenty-first ACM SIGOPS symposium on Operating systems principles,
SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
591-5. doi: 10.1145/1294261.1294281. URL http://doi.acm.org/10.

1145/1294261.1294281. - Cited on pages 2, 11, 17, 24, 42 and 60.

Patrick Eugster, Rachid Guerraoui, Sidath Handurukande, Petr Kouznetsov, and Anne-
Marie Kermarrec. Lightweight probabilistic broadcast. ACM Transactions on Com-

puter Systems, 21(4):341–374, 2003. ISSN 0734-2071. doi: http://doi.acm.org/10.
1145/945506.945507. - Cited on page 46.

W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer. Protopeer: From simulation
to live deployment in one step. In Peer-to-Peer Computing , 2008. P2P ’08. Eighth

International Conference on, pages 191–192, Sept. 2008. doi: 10.1109/P2P.2008.
13. - Cited on page 64.

Prasanna Ganesan, Beverly Yang, and Hector Garcia-Molina. One torus to rule them
all: multi-dimensional queries in p2p systems. In WebDB ’04: Proceedings of the

7th International Workshop on the Web and Databases, pages 19–24, New York,
NY, USA, 2004. ACM. doi: http://doi.acm.org/10.1145/1017074.1017081. - Cited
on pages 19 and 20.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems:

The Complete Book. 2008. - Cited on page 1.

Georges Gardarin, Fei Sha, and Zhao-Hui Tang. Calibrating the Query Optimizer Cost
Model of IRO-DB, an Object-Oriented Federated Database System. In Proceedings

http://dx.doi.org/10.1109/CCGRID.2008.72
http://dx.doi.org/10.1109/CCGRID.2008.72
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281

Bibliography 121

of the 22th International Conference on Very Large Data Bases, VLDB ’96, pages
378–389, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc. ISBN
1-55860-382-4. URL http://dl.acm.org/citation.cfm?id=645922.

673485. - Cited on page 103.

Anil K. Garg and C. C. Gotlieb. Order-preserving key transformations. ACM Trans.

Database Syst., 11(2):213–234, 1986. ISSN 0362-5915. doi: http://doi.acm.org/10.
1145/5922.5923. - Cited on pages 19 and 60.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
SIGOPS Operating Systems Review, 37(5):29–43, 2003. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/1165389.945450. - Cited on pages 31 and 96.

Ali Ghodsi, Luc Onana Alima, and Seif Haridi. Symmetric replication for structured
peer-to-peer systems. In Proceedings of the 2005/2006 international conference

on Databases, information systems, and peer-to-peer computing, DBISP2P’05/06,
pages 74–85, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-71660-
0. URL http://dl.acm.org/citation.cfm?id=1783738.1783748.
- Cited on page 23.

C. Gkantsidis, M. Mihail, and A. Saberi. Random walks in peer-to-peer networks:
algorithms and evaluation. Performance Evaluation In P2P Computing Systems, 63
(3):241–263, 2006. ISSN 0166-5316. - Cited on page 47.

Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas Anderson.
Scalable consistency in scatter. In Proceedings of the Twenty-Third ACM Sympo-

sium on Operating Systems Principles, SOSP ’11, pages 15–28, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043559.
URL http://doi.acm.org/10.1145/2043556.2043559. - Cited on
page 114.

Google. Cloud SQL: pick the plan that fits your app.
http://googleappengine.blogspot.pt/2012/05/cloud-sql-pick-plan-that-fits-your-
app.html, May 2012. - Cited on page 87.

Rachid Guerraoui and André Schiper. Software-based replication for fault tolerance.
Computer, 30(4):68–74, April 1997. ISSN 0018-9162. doi: 10.1109/2.585156.
URL http://dx.doi.org/10.1109/2.585156. - Cited on page 57.

http://dl.acm.org/citation.cfm?id=645922.673485
http://dl.acm.org/citation.cfm?id=645922.673485
http://dl.acm.org/citation.cfm?id=1783738.1783748
http://doi.acm.org/10.1145/2043556.2043559
http://dx.doi.org/10.1109/2.585156

122 Bibliography

Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. Efficient routing for peer-to-
peer overlays. In First Symposium on Networked Systems Design and Implemen-

tation (NSDI), San Francisco, CA, March 2004. - Cited on pages 15, 53, 54, 60
and 65.

Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
OLTP through the looking glass, and what we found there. In Proceedings of the

2008 ACM SIGMOD international conference on Management of data, SIGMOD
’08, pages 981–992, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-
6. doi: http://doi.acm.org/10.1145/1376616.1376713. URL http://doi.acm.

org/10.1145/1376616.1376713. - Cited on pages 39 and 89.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. ISSN
0164-0925. doi: http://doi.acm.org/10.1145/78969.78972. - Cited on page 3.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:
wait-free coordination for internet-scale systems. In Proceedings of the 2010

USENIX conference on USENIX annual technical conference, USENIXATC’10,
pages 11–11, Berkeley, CA, USA, 2010. USENIX Association. URL http://dl.
acm.org/citation.cfm?id=1855840.1855851. - Cited on pages 54,
108 and 110.

Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: under-
standing microblogging usage and communities. In WebKDD/SNA-KDD ’07: Pro-

ceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and

social network analysis, pages 56–65, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-848-0. doi: http://doi.acm.org/10.1145/1348549.1348556. - Cited on
pages 75 and 76.

Márk Jelasity and Ozalp Babaoglu. T-man: Gossip-based overlay topology man-
agement. In In 3rd Int. Workshop on Engineering Self-Organising Applications

(ESOA’05, pages 1–15. Springer-Verlag, 2005. - Cited on page 43.

R. Jimenez-Peris and M. Patiño-Martinez. System and method for highly
scalable decentralized and low contention transactional processing.

http://doi.acm.org/10.1145/1376616.1376713
http://doi.acm.org/10.1145/1376616.1376713
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851

Bibliography 123

http://lsd.ls.fi.upm.es/lsd/papers/2011/System-and-method-for-highly-scalable-
decentralized-and-low-contention-transactional-processing-descriptionPatent-61-
561- Cited on page 98.

F. Junqueira, B. Reed, and M. Yabandeh. Lock-free transactional support for large-
scale storage systems. In 7th Workshop on Hot Topics in System Dependability

(HotDep’11), 2011. - Cited on page 98.

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web. In STOC ’97: Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, pages 654–663, New
York, NY, USA, 1997. ACM. ISBN 0-89791-888-6. doi: http://doi.acm.org/10.
1145/258533.258660. - Cited on page 11.

David R. Karger and Matthias Ruhl. Simple efficient load balancing algorithms for
peer-to-peer systems. In SPAA ’04: Proceedings of the sixteenth annual ACM sym-

posium on Parallelism in algorithms and architectures, pages 36–43, New York, NY,
USA, 2004. ACM. ISBN 1-58113-840-7. doi: http://doi.acm.org/10.1145/1007912.
1007919. - Cited on page 54.

Ioannis Konstantinou, Evangelos Angelou, Christina Boumpouka, Dimitrios
Tsoumakos, and Nectarios Koziris. On the elasticity of NoSQL databases over cloud
management platforms. In Proceedings of the 20th ACM international conference

on Information and knowledge management, CIKM ’11, pages 2385–2388, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0717-8. doi: 10.1145/2063576.
2063973. URL http://doi.acm.org/10.1145/2063576.2063973. -
Cited on page 116.

Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos, Christina
Boumpouka, Nectarios Koziris, and Spyros Sioutas. TIRAMOLA: elastic NoSQL
provisioning through a cloud management platform. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,
pages 725–728, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-
9. doi: 10.1145/2213836.2213943. URL http://doi.acm.org/10.1145/

2213836.2213943. - Cited on page 95.

http://doi.acm.org/10.1145/2063576.2063973
http://doi.acm.org/10.1145/2213836.2213943
http://doi.acm.org/10.1145/2213836.2213943

124 Bibliography

Donald Kossmann. The state of the art in distributed query processing. ACM Comput.

Surv., 32:422–469, December 2000. ISSN 0360-0300. doi: http://doi.acm.org/
10.1145/371578.371598. URL http://doi.acm.org/10.1145/371578.

371598. - Cited on page 37.

Balachander Krishnamurthy, Phillipa Gill, and Martin Arlitt. A few chirps about twit-
ter. In WOSP ’08: Proceedings of the first workshop on Online social networks,
pages 19–24, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-182-8. doi:
http://doi.acm.org/10.1145/1397735.1397741. - Cited on pages 75 and 76.

Salma Ktari, Mathieu Zoubert, Artur Hecker, and Houda Labiod. Performance eval-
uation of replication strategies in DHTs under churn. In MUM ’07: Proceed-

ings of the 6th international conference on Mobile and ubiquitous multimedia,
pages 90–97, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-916-6. doi:
http://doi.acm.org/10.1145/1329469.1329481. - Cited on pages 21, 24 and 40.

Tirthankar Lahiri, Vinay Srihari, Wilson Chan, N. MacNaughton, and Sashikanth
Chandrasekaran. Cache fusion: Extending shared-disk clusters with shared caches.
In Proceedings of the 27th International Conference on Very Large Data Bases,
VLDB ’01, pages 683–686, San Francisco, CA, USA, 2001. Morgan Kauf-
mann Publishers Inc. ISBN 1-55860-804-4. URL http://dl.acm.org/

citation.cfm?id=645927.672377. - Cited on page 89.

Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured stor-
age system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010. ISSN 0163-
5980. doi: 10.1145/1773912.1773922. URL http://doi.acm.org/10.

1145/1773912.1773922. - Cited on pages 2, 11, 17, 25 and 60.

Matthew Leslie, Jim Davies, and Todd Huffman. Replication strategies for reli-
able decentralised storage. In ARES ’06: Proceedings of the First International

Conference on Availability, Reliability and Security, pages 740–747, Washing-
ton, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2567-9. doi: http:
//dx.doi.org/10.1109/ARES.2006.108. - Cited on pages 21, 24 and 40.

H.C. Lim, S Babu, and J.S. Chase. Automated control for elastic storage. Pro-

ceeding of the 7th international conference on Autonomic computing, pages 1–10,
2010. URL http://dl.acm.org/citation.cfm?id=1809051. - Cited
on page 116.

http://doi.acm.org/10.1145/371578.371598
http://doi.acm.org/10.1145/371578.371598
http://dl.acm.org/citation.cfm?id=645927.672377
http://dl.acm.org/citation.cfm?id=645927.672377
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://dl.acm.org/citation.cfm?id=1809051

Bibliography 125

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with cops. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 401–416, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0977-6. doi: 10.1145/2043556.2043593. URL http://doi.acm.org/10.

1145/2043556.2043593. - Cited on page 114.

Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and compari-
son of peer-to-peer overlay network schemes. Communications Surveys & Tutorials,

IEEE, 7(2):72–93, 2005. ISSN 1553-877X. - Cited on page 10.

L. Massoulié, E. Le Merrer, A.-M. Kermarrec, and A. Ganesh. Peer counting and
sampling in overlay networks: random walk methods. In PODC ’06: Proceedings

of the twenty-fifth annual ACM symposium on Principles of distributed computing,
pages 123–132, New York, NY, USA, 2006. ACM. ISBN 1-59593-384-0. - Cited
on page 47.

Miguel Matos, Ricardo Vilaca, José Pereira, and Rui Oliveira. An epidemic approach
to dependable key-value substrates. In International Workshop on Dependability

of Clouds, Data Centers and Virtual Computing Environments (DCDV 2011), June
2011. - Cited on pages 45 and 114.

Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information sys-
tem based on the XOR metric. In IPTPS ’01: Revised Papers from the First In-

ternational Workshop on Peer-to-Peer Systems, pages 53–65, London, UK, 2002.
Springer-Verlag. ISBN 3-540-44179-4. - Cited on page 21.

Erik Meijer. The world according to LINQ. Commun. ACM, 54(10):45–51, October
2011. ISSN 0001-0782. doi: 10.1145/2001269.2001285. URL http://doi.

acm.org/10.1145/2001269.2001285. - Cited on pages 3 and 48.

Erik Meijer and Gavin Bierman. A co-relational model of data for large shared data
banks. ACM Queue, 9(3):30:30–30:48, March 2011. ISSN 1542-7730. doi: 10.
1145/1952746.1961297. URL http://doi.acm.org/10.1145/1952746.

1961297. - Cited on pages 89 and 115.

P Nadkarni and C. Brandt. Data Extraction and Ad Hoc Query of an Entity-Attribute-

http://doi.acm.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2001269.2001285
http://doi.acm.org/10.1145/2001269.2001285
http://doi.acm.org/10.1145/1952746.1961297
http://doi.acm.org/10.1145/1952746.1961297

126 Bibliography

Value Database. Journal of the American Medical Informatics Association, 5(6):
511–527, 1998. - Cited on pages 25, 48 and 90.

Jurriaan Persyn (NetLog). Database sharding at netlog, with mysql and php.
http://www.jurriaanpersyn.com/archives/2009/02/12/ database-sharding-at-netlog-
with-mysql-and-php/., 2012. - Cited on page 89.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD’08,
2008. - Cited on pages 3 and 48.

M. Tamer Özsu and Patrick Valduriez. Principles of distributed database systems (2nd

ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999. ISBN 0-13-659707-6.
- Cited on pages 17, 37 and 89.

J. Pereira, L. Rodrigues, M.J. Monteiro, R. Oliveira, and A.-M. Kermarrec. Neem:
network-friendly epidemic multicast. Reliable Distributed Systems, 2003. Proceed-

ings. 22nd International Symposium on, pages 15–24, Oct. 2003. ISSN 1060-9857.
- Cited on pages 43 and 46.

Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data:
Parallel analysis with sawzall. Sci. Program., 2005. - Cited on pages 3 and 48.

C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In SPAA ’97: Proceed-

ings of the ninth annual ACM symposium on Parallel algorithms and architectures,
pages 311–320, New York, NY, USA, 1997. ACM. ISBN 0-89791-890-8. doi:
http://doi.acm.org/10.1145/258492.258523. - Cited on pages 13 and 16.

Venugopalan Ramasubramanian and Emin Gün Sirer. Beehive: O(1)lookup perfor-
mance for power-law query distributions in peer-to-peer overlays. In NSDI’04:

Proceedings of the 1st conference on Symposium on Networked Systems Design and

Implementation, pages 8–8, Berkeley, CA, USA, 2004. USENIX Association. -
Cited on page 15.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A
scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001

conference on Applications, technologies, architectures, and protocols for computer

Bibliography 127

communications, pages 161–172, New York, NY, USA, 2001. ACM. ISBN 1-
58113-411-8. doi: http://doi.acm.org/10.1145/383059.383072. - Cited on pages 20,
23 and 43.

S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond:
The oceanstore prototype. In Proceedings of the Conference on File and Storage

Technologies. USENIX, 2003. - Cited on page 13.

John Risson, Aaron Harwood, and Tim Moors. Stable high-capacity one-hop dis-
tributed hash tables. In ISCC ’06: Proceedings of the 11th IEEE Symposium on

Computers and Communications, pages 687–694, Washington, DC, USA, 2006.
IEEE Computer Society. ISBN 0-7695-2588-1. doi: http://dx.doi.org/10.1109/
ISCC.2006.152. - Cited on page 53.

Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Middleware ’01: Proceed-

ings of the IFIP/ACM International Conference on Distributed Systems Platforms

Heidelberg, pages 329–350, London, UK, 2001. Springer-Verlag. ISBN 3-540-
42800-3. - Cited on pages 14, 20, 21, 43 and 46.

Michael Rys. Scalable SQL. ACM Queue: Tomorrow’s Computing Today, 9(4):30,
April 2011. ISSN 1542-7730 (print), 1542-7749 (electronic). doi: http://dx.doi.org/
10.1145/1966989.1971597. - Cited on page 87.

Hans Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994. - Cited on
pages 19 and 61.

Cristina Schmidt and Manish Parashar. Flexible information discovery in decentralized
distributed systems. In HPDC ’03: Proceedings of the 12th IEEE International

Symposium on High Performance Distributed Computing, page 226, Washington,
DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-1965-2. - Cited on pages 19
and 20.

Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: what does
an MTTF of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX

conference on File and Storage Technologies, Berkeley, CA, USA, 2007. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1267903.

1267904. - Cited on page 17.

http://dl.acm.org/citation.cfm?id=1267903.1267904
http://dl.acm.org/citation.cfm?id=1267903.1267904

128 Bibliography

Thorsten Schutt, Florian Schintke, and Alexander Reinefeld. Structured overlay with-
out consistent hashing: Empirical results. In CCGRID ’06: Proceedings of the Sixth

IEEE International Symposium on Cluster Computing and the Grid, page 8, Wash-
ington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2585-7. - Cited on
pages 19 and 21.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Sympo-

sium on Mass Storage Systems and Technologies (MSST), MSST ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-1-4244-7152-
2. doi: 10.1109/MSST.2010.5496972. URL http://dx.doi.org/10.1109/

MSST.2010.5496972. - Cited on page 96.

A. Sousa, J. Pereira, L. Soares, A. Correia Jr., L. Rocha, R. Oliveira, and F. Moura.
Testing the Dependability and Performance of Group Communication Based
Database Replication Protocols. In International Conference on Dependable Sys-

tems and Networks (DSN’05), june 2005. - Cited on page 65.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable Peer-To-Peer lookup service for internet applications. In Pro-

ceedings of the 2001 ACM SIGCOMM Conference, pages 149–160, 2001. - Cited
on pages 12, 20, 21, 29, 43, 44, 46, 53 and 60.

Michael Stonebraker and Rick Cattell. 10 rules for scalable performance in ’sim-
ple operation’ datastores. Commun. ACM, 54(6):72–80, June 2011. ISSN 0001-
0782. doi: 10.1145/1953122.1953144. URL http://doi.acm.org/10.

1145/1953122.1953144. - Cited on pages 87 and 90.

Michael Stonebraker and Joseph M. Hellerstein. Readings in database systems (3rd

ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998. ISBN
1-55860-523-1. - Cited on page 35.

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it’s time for a com-
plete rewrite). In Proceedings of the 33rd international conference on Very large

data bases, VLDB ’07, pages 1150–1160. VLDB Endowment, 2007. ISBN 978-1-
59593-649-3. URL http://dl.acm.org/citation.cfm?id=1325851.

1325981. - Cited on pages 87 and 89.

http://dx.doi.org/10.1109/MSST.2010.5496972
http://dx.doi.org/10.1109/MSST.2010.5496972
http://doi.acm.org/10.1145/1953122.1953144
http://doi.acm.org/10.1145/1953122.1953144
http://dl.acm.org/citation.cfm?id=1325851.1325981
http://dl.acm.org/citation.cfm?id=1325851.1325981

Bibliography 129

A. Thusoo, J.S. Sarma, N. Jain, Zheng Shao, P. Chakka, Ning Zhang, S. Antony, Hao
Liu, and R. Murthy. Hive - a petabyte scale data warehouse using hadoop. In
Data Engineering (ICDE), 2010 IEEE 26th International Conference on, pages 996
–1005, march 2010. doi: 10.1109/ICDE.2010.5447738. - Cited on page 38.

D. Tran and Cuong Pham. PUB-2-SUB: A Content-Based Publish/Subscribe Frame-
work for Cooperative P2P Networks. NETWORKING 2009, 5550:770–781, May
2009. doi: 10.1007/978-3-642-01399-7. URL http://www.springerlink.

com/index/1705131P5411181W.pdf. - Cited on page 47.

B Trushkowsky, P. Bodı́k, A Fox, M.J. Franklin, M.I. Jordan, and D.A. Patterson. The
SCADS director: Scaling a distributed storage system under stringent performance
requirements. Proc. of FAST, 2011. URL http://www.usenix.org/event/

fast11/tech/full_papers/Trushkowsky.pdf. - Cited on page 116.

Twitter. Twitter api documentation. http://apiwiki.twitter.com/Twitter-API-
Documentation, 2010. - Cited on page 75.

Ricardo Vilaça, Francisco Cruz, and Rui Oliveira. On the expressiveness and trade-offs
of large scale tuple stores. In Robert Meersman, Tharam Dillon, and Pilar Herrero,
editors, On the Move to Meaningful Internet Systems, OTM 2010, volume 6427 of
Lecture Notes in Computer Science, pages 727–744. Springer Berlin / Heidelberg,
2010. URL http://dx.doi.org/10.1007/978-3-642-16949-6_5. -
Cited on page 92.

Werner Vogels. Eventually consistent. Commun. ACM, 52:40–44, 2009. ISSN 0001-
0782. doi: http://doi.acm.org/10.1145/1435417.1435432. URL http://doi.

acm.org/10.1145/1435417.1435432. - Cited on page 2.

Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. Consistent join queries in cloud data
stores. Technical Report IR-CS-068, 2011. - Cited on page 38.

Qin Xiongpai, Cao Wei, and Wang Shan. Simulation of main memory database parallel
recovery. In SpringSim ’09: Proceedings of the 2009 Spring Simulation Multicon-

ference, pages 1–8, San Diego, CA, USA, 2009. Society for Computer Simulation
International. - Cited on page 65.

Haifeng Yu, Phillip B. Gibbons, and Suman Nath. Availability of multi-object op-
erations. In NSDI’06: Proceedings of the 3rd conference on 3rd Symposium on

http://www.springerlink.com/index/1705131P5411181W.pdf
http://www.springerlink.com/index/1705131P5411181W.pdf
http://www.usenix.org/event/fast11/tech/full_papers/Trushkowsky.pdf
http://www.usenix.org/event/fast11/tech/full_papers/Trushkowsky.pdf
http://dx.doi.org/10.1007/978-3-642-16949-6_5
http://doi.acm.org/10.1145/1435417.1435432
http://doi.acm.org/10.1145/1435417.1435432

130 Bibliography

Networked Systems Design & Implementation, pages 16–16, Berkeley, CA, USA,
2006. USENIX Association. - Cited on pages 20, 21, 24 and 40.

K. Zellag and B. Kemme. Real-time quantification and classification of consistency
anomalies in multi-tier architectures. In Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, pages 613 –624, april 2011. doi: 10.1109/ICDE.2011.
5767927. - Cited on page 115.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for fault-
tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141, UC
Berkeley, April 2001. - Cited on pages 13, 21 and 23.

Ming Zhong, Kai Shen, and Joel Seiferas. Correlation-aware object placement for
multi-object operations. In ICDCS ’08: Proceedings of the 2008 The 28th Inter-

national Conference on Distributed Computing Systems, pages 512–521, Washing-
ton, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3172-4. doi:
http://dx.doi.org/10.1109/ICDCS.2008.60. - Cited on pages 20 and 48.

	Introduction
	Problem statement and objectives
	Contributions
	Results
	Dissertation outline

	Related work
	Distributed Hash Tables (DHT)
	Chord
	Tapestry
	Pastry
	One-hop lookup DHTs
	Discussion

	Data placement in DHTs
	Single node placement
	Replica's placement

	Large scale data stores
	Data models and Application Programming Interfaces (API)
	Architecture
	Discussion

	Query processing
	Rich processing in large scale data stores
	Discussion

	Summary

	DataDroplets
	Clouder
	Assumptions
	Architecture
	Epidemic-based persistent-state layer

	DataDroplets
	Data model
	Application Programming Interface (API)
	Request handling
	Overlay management
	Bootstrapping
	Fault tolerance
	Data placement
	Replica placement strategy

	Prototype
	SimpleOneHop
	DataDroplets

	Evaluation
	Test workloads
	Experimental setting
	Results
	Summary of results

	Discussion

	SQL on large scale data stores
	Assumptions
	Challenges
	Scalable query processing
	Data model mismatch
	Performance

	Architecture
	Prototype
	HBase overview
	Derby overview
	CumuloNimbo's architecture
	Prototype architecture
	Relational-tuple store mapping
	Optimizing data transfer
	Scan costs
	Support for multiple architectures

	Evaluation
	Test workloads
	HBase
	HBase transaction manager
	Summary of results

	Discussion

	Conclusions
	Future work

	Bibliography

